

前回(2008年12月号pp.88-92)は、16進数で書かれた機 械語プログラムによりメモリを初期化し、学習用CPU 「TINYCPU」上で機械語プログラムを動作させた、今回は TINYCPUをターゲットとするアセンブラ「TINYASM」を、 Perl言語を用いて設計する.このアセンブラはニーモニックと ラベルで書かれたアセンブリ言語プログラムを16進数の機械 語命令の列に変換する.TINYASMから出力された機械語プロ グラムをVerilog HDLのメモリ初期化部分に変換することで、 FPGAに実装できる. (筆者)

● アセンブラを作ってプログラミングを容易にしよう

図1は、コンパイラとアセンブラを用いて学習用CPU 「TINYCPU」向けプログラムを生成する処理の、全体の流 れを表しています. 一般に機械語プログラムを見ても、どのような処理を 行っているのかを解読するのは困難です.しかしアセンブ リ言語プログラムは、各命令がどのような動作をするかを 見ていけば、処理の手順を分析できます.また、機械語で 直接プログラミングを行うのはほとんど不可能ですが、ア センブリ言語によるプログラミングは比較的容易です.

そこで本稿では、アセンブリ言語プログラムを機械語プ ログラムに変換する TINYCPU 向けアセンブラ 「TINYASM」を設計します.

アセンブラから出力された機械語プログラムは、そのま まVerilog HDLのメモリの初期化部分に変換します. この 初期化部分を、前回と同様に、メモリ(ram.v)のinitial 文に挿入することで、メモリの初期値とすることができま す. そして、ビット・ファイルを生成し、FPGA にダウン

Keyword アセンブラ,アセンブリ言語プログラム,機械語プログラム,コンパイラ, Cygwin, Perl, Flex, Bison, gcc, ラベル,ニーモニック,オペランド,ラベル・リスト

Cygwin Setup - Select Packages						
	C Ke	⊧p <u>C</u> Prev	(€ <u>O</u> urr	СЕ≽р	View	Category
Category	Current	New		B S	Size	Pa 📥
 ⊢ All	ty ∲ Default lefault Default sfault fault Default					
Hide obsolete pe	iokages	_ < 戻	3(<u>B</u>)	次へ(N) >	>	・ *ャンセル

図2 Cygwinのパッケージ選択画面 Allを選択する.

ロードすることにより、TINYCPUは機械語プログラムを 実行できます.

コンパイラはC言語風に記述されたプログラムをニーモ ニック(命令)とラベルからなるアセンブリ言語プログラム に変換します.コンパイラの設計は次回紹介する予定です.

● アセンブラ TINYASM の開発環境として Cygwin を利用

アセンブラ TINYASM の設計は Perl 言語で行います. コンパイラの設計では、字句解析ツール「Flex」、構文解析 ツール「Bison」、C 言語コンパイラ「gcc」を用います. TINYCPU向けのプログラミング環境を構築するためには、 合わせて四つのソフトウェアが必要です.

Linux などのUNIX 環境では、これら四つのソフトウェ アが標準でインストールされていますが、Windows では別 途インストールする必要があります。そこでWindows上 で動作するUNIX エミュレータである「Cygwin」を用いる ことにします。Cygwin はフリー・ソフトウェアで、 http://www.cygwin.com/からインストーラ (setup.exe) をダウンロードできます。インストーラを起動すると、イ ンターネット経由でCygwin をインストールできます。イ ンストール途中でパッケージ選択が要求されますが、四つ のソフトウェアをインストールするために Allを選択しま す (図2).

インストールが完了すると、Windowsのデスクトップに Cygwinのアイコンが現れます.これをクリックすると、 Cygwinのターミナルが開きます.念のためPerl, Bison, Flex, gcc がインストールされているかを確認してみましょ う.このターミナル・ウィンドウで、 \$ perl --version

図3 Cygwinのターミナル・ウィンドウ perlのバージョン情報が表示されている.

と入力します. 図3のようにperlのバージョン情報が表示 されれば、インストールされていることが分かります.

同様にオプション--versionを用いて, bison, flex, gcc のバージョン情報をそれぞれ表示し, インストールされて いるか確認しましょう.

● アセンブラに入力するアセンブリ言語の仕様

アセンブリ言語では,各行にニーモニックとラベルを記 述します.各行の形は,以下の四つのいずれかになってい ます.

ラベル宣言:「ラベル:」の形をとる.分岐先を表す.ニーモニック:

ニーモニック(とオペランド)をそのまま記述. ラベル宣言&ニーモニック:

「ラベル:ニーモニック(とオペランド)」の形で,ラ ベル宣言とニーモニックを1行で記述.

変数宣言:

「変数:初期値」の形をとる.変数に割り当てる領域と その初期値を表す.

オペランドはラベル,変数,即値のいずれかです.例え ば図1のアセンブリ言語プログラム count.asm の「L1: PUSH n」は,「ラベル:ニーモニックとオペランド」に当 てはまります.また,「n: 0」は「変数:初期値」に対応し ます.

● アセンブラの動作を理解しよう

アセンブラの動作を理解するために、ハンド・アセンブ