Aurora 活用 チュートリアル

~Xilinx 社の FPGA 間通信プロトコルを 使いこなす

久保田新二

ここでは、FPGA 間インターフェースで用いるデータ・リン ク層通信プロトコルの一つである米国 Xilinx 社の「Auroral の活用法を解説する. Aurora 通信ブロックの生成方法やユー ザ論理とのインターフェース法、検証手法について具体的に説 明する. (編集部)

Aurora は、米国 Xilinx 社のデータ・リンク層通信プロ トコルです、FPGA が搭載する高速シリアル通信ブロック RocketIOのMGT ブロックを使用します(図1). 通信した いデータにヘッダとフッタを自動的に付加して送受信を行 います(図2).

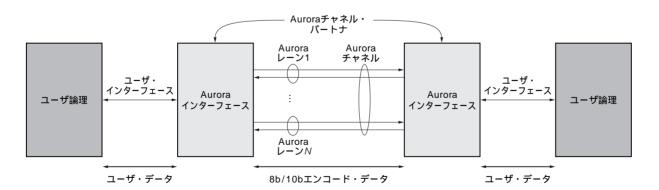

SCP	Data 0	Data 1	Data 2			Data N-1	Data N	ECP	
-----	-----------	-----------	-----------	--	--	-------------	-----------	-----	--

図2 シリアル・データのパケットのイメージ

通信したいデータにヘッダとフッタを自動的に付加する.

RocketIOのMGT ブロックは, さまざまなシリアル通信 仕様に柔軟に対応しています.しかし,特性の設定やデー タ同期への考慮が難しいため,とても使用しにくいもので す.これを簡単に使用できるように開発されたプロトコル が, Auroraです.

Aurora モジュールは, Xilinx 社の FPGA 開発ツールの 一つで、IPコアの設定・生成を行う「CORE Generator」を 使って作成します、ウィザードに従ってユーザ・インター フェースのパラメータと通信速度の値を設定していくだけ です.難しいMGTの設定は自動で行ってくれるので,設 計者はMGTをほとんど意識せずに高速シリアル通信回路 を設計できます.後はAurora通信ブロックに対し,送受 信したいデータを Aurora で決められたユーザ・インター フェースの仕様通りのタイミングで受け渡しすればよいの です.

図1 Aurora を使ったシステム構成

米国 Xilinx 社の FPGA が搭載する高速シリアル通信プロック RocketIO の MGT プロックを使用する.

KeyWord

FPGA, 高速シリアル通信, RocketIO, Aurora, CORE Generator, MGT, クロック・コレクション, クロック リセット, ModelSim

しかし,このインターフェースの仕様を正しく理解していないと,予想外の事態を引き起こす可能性があります.

1. 高速シリアル通信ブロック活用の基礎

Auroraを使用すれば、設計者はMGTをほとんど意識せずに設計を行えると述べました.しかし、MGTの基本構成を全く知らずに設計はできません.ここではVirtex-4をターゲットに、Auroraの設計に必要な最低限の知識についてまとめます.

● MGTの構成

MGT は FPGA の品種によって搭載数が異なります.また,MGT と接続されるシリアル信号線も専用ピンとして決められており,パッケージによって異なります.

Virtex-4では、物理的にMGT は左右に分かれて配置されています(図3).同様に、MGTへ供給するクロック・ドライバも左右それぞれに配置されています。この物理的要因から、供給するリファレンス・クロックは、左右それぞれにある MGT では共通に使用可能ですが、左右にまたがる MGT で共有することはできません。

MGT は2個(MGTA, MGTB)で一つのMGTタイル(ペア)を構成しています.そのためMGTタイルの片側のMGTのみを使用する場合,それとペアとなっているMGTには未使用の処理が必要になります.CORE GeneratorでAuroraを作成したときに,一緒に出力されるunused_mgtというモジュールを組み込みます.さらにペアのMGT同士のコミュニケーション用にCOMBUSIN,COMBUSOUTという信号があるので,互いに接続する必要があります.

● クロック・コレクションの動作

クロック・コレクションとは,対向して接続された Auroraの送信側から一定サイクル期間内にアイドル・シーケンスを挿入する処理のことです.

MGT の受信側には、受信データを一時蓄えるためのエラスティック・バッファという FIFO メモリが存在しています.このバッファは、書き込みと読み出しのクロックが異なります.書き込みは受信データから抽出したクロックで、読み出しはユーザ・インターフェースから供給されたクロックにて行われます.SerDes チップの場合では、受信

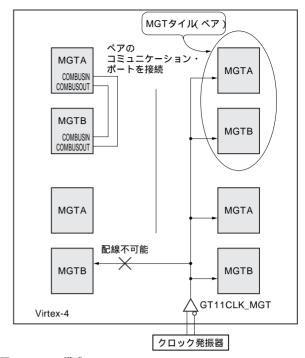


図3 MGT の構成

Virtex-4 では,物理的にMGT は左右に分かれて配置されている.MGT へ供給するクロック・ドライバも左右それぞれに配置されている.MGT は2個(MGTA,MGTB)で一つのMGT タイル(ペア)を構成する.

側は従属モードとして受信したデータから抽出したクロックをユーザ・インターフェースで使用しますが,ここではクロックの乗せ換えを行っているようです.

送信側と受信側で同じ仕様の水晶発振器を使用していても、水晶発振器の精度の範囲で周波数が異なります.従って、これが原因で受信側のエラスティック・バッファにオーバフローまたはアンダフローが生じる可能性があります.すると、HARD_ERRORに至って、Lane_UPとChannel_UPがダウンし、通信が途切れてしまいます.

この問題を回避するため、一定期間内にアイドル・シーケンスを送信するサイクルが必要になります.これが送信側からのクロック・コレクションです.クロック・コレクションは、Auroraの入力ポートにあるDO_CC信号を一定期間以上アサートすることによって行います.Lane_UP、Channel UP確立後から常に必要なサイクルです.

クロック・コレクションのアサート間隔とアサート期間は,ユーザ・インターフェースのデータ幅や水晶発振器の精度によって異なります.100ppm(ppmは百万分の1)精度では表1のようになります.

クロック・コレクションを挿入するためのタイミング設