## EMC 問題のケース・スタディ テラビット・ルータのトラブル・シューティング事例

小暮裕明

前回まで2回にわたり、電磁界解析ソフトウェアで解け るさまざまな例題を分野別に概観することで、電磁界解 析ソフトウェアを凍習するコツを探りました。今回はテ ラビット・ルータのトラブル・シューティングという具 体的なミッションにおいて、電磁界解析ソフトウェアの どの機能を使ってどのように問題を解決したか、紹介し ます. (筆者)

## はじめに

電磁界解析ソフトウェアが商用化され始めた1980年代 と比較すると、現在の豊富な機能は、ちょうどシンプル なテキスト・エディタと最新の多機能ワープロほどの違 いがあるかもしれません、繰り返されるバージョンアップ は、とどまることを知らないパソコンの低価格化、高性 能化によるところが大きいのですが、一方で、文字さえ 打てればよいのに多機能ワープロを使ってしまうといった 現状にも似ています.

筆者が初めて電磁界解析ソフトウェアを手にした10年 ほど前は、簡単なマイクロストリップ線路や導波管の解 析結果にさえ新鮮な驚きを覚えました。 よりリアルな問 題を解きたくても、メモリや計算速度の制約があったの で、テキスト・エディタ級の機能で十分だったのかもしれ ません。最近はハードウェア、ソフトウェアともに進化し たことで、10年前にはあきらめていた問題が解けるよう になってきましたが、そうなれば解決したい問題は一気に リアルになるのが心情というものです。

環境は整ったかに見えますが、いざ具体的に自分の仕

事で使おうとすると、マニュアルをじっくり読んだとして もどこから手をつけてよいのか迷ってしまうことが少なく ありません。多機能ワープロのマニュアルを1ページ目か ら順に読んでも、すぐに社内報を作れないように、われ われには「社内報の作りかた」といったケース・スタディ が必要なのです.



## EMC問題と電磁界解析ソフト

## ●電磁波の放射メカニズムと変位電流

最近になって電磁界解析で扱うようになった問題に EMC があります <sup>注1</sup>. 昨年シンガポールで電磁界解析の セミナの講師を務めましたが、そのとき強く要請のあっ たタイトルが「高周波設計とEMI/EMC」でした。受講 者は学生と民間企業の技術者が半々でしたが、席上、電 磁界解析ソフトウェアでEMC問題を解決した具体的な 事例はあるのかという質問があり、準備していった啓蒙 的な内容だけでは満足させられなかったのではないかとい う印象が残りました.

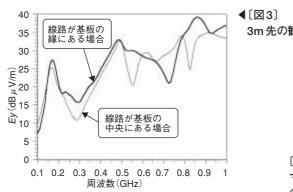
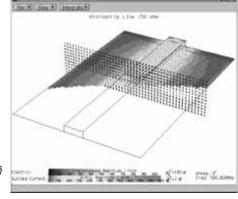

われわれの身の回りにある電気製品は、互いになんら かの電磁的な影響を与え合って稼働していますから、ま さに「EMCとは、電磁波に対する環境問題である」と言 えます1). 心臓ペース・メーカの電磁波障害など、電磁 環境の問題が社会に及ぼす影響も大きくなっていますが、 開発者が直面するのは、VCCI、FCC などに規定されて いる不要輻射の規制値でしょう注2.

図1はVCCIの定める放射ノイズ規制の例です<sup>2)</sup>. 放 射物から3m離れた地点における放射ノイズの限度値を 規定したグラフですが、230MHzを超えると7dB規制値 が緩やかになっています。 なぜ230MHz なのか、それよ り高い周波数でなぜ規制値が緩やかになるのか、門外漢 の筆者は即答できないのですが、プリント配線板からの 不要輻射については、以前から「魔の200MHz帯」とい われているようです3.

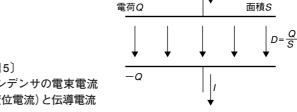

注1 EMC (electromagnetic compatibility, 電磁環境両立性). IEEE (米国電気電子学会)の電気・電子の辞典では、「人工システムが、 電磁環境を汚染し、ほかに妨害を与えるような不要電磁エネルギ を放出することも、また同時に電磁環境の影響を受けることもな く,その性能を十分に発揮できる能力」と説明されている。

注2 日本ではVCCI(情報処理装置等電波障害自主規制協議会),米 国ではFCC (アメリカ連邦通信委員会) がそれぞれ規格を定めて いる





3m 先の観測点での電界




〔図4〕▶ マイクロストリップ線路近傍 の電界のようす

KCC社のMicro-Stripes \*\*3を用いて、図2のような2 種類のプリント基板をシミュレーションし,3m 先の観測 点で電界を求めた結果を図3に示します。 細線は線路が 基板中央部にあるマイクロストリップ線路で、<br />
太線は線 路が基板の縁にある場合です。後者のほうが、全周波数 にわたって観測される電界レベルが高くなっているのがわ かりますが、一部逆転している周波数も見受けられます。

全体的な傾向としては周波数が高くなるにしたがって 放射のレベルも高くなっていますが、これは次のように 考えられます。マイクロストリップ線路は、図4に示す ように、信号線路パターンとグラウンドの間に強い電界 を生じます。基板とグラウンドの間はコンデンサのよう にも見えますが、この部分をコンデンサ・モデルとして 図5のように簡略化してみます.

いま導体板の電荷 O が増加すると、 導体板から発生す る電東注4は増加します。 そこで微小時間に変化する電東 密度Dの増加の割合 $\partial D/\partial t$ を考えてみます。図5に示す ように、コンデンサに接続されている線路に流れる電流1 は、コンデンサの前後で連続しているかに見えますが、 導体板間は空間(または誘電体)ですから不連続になって います. そこでコンデンサ内に∂D/∂tの密度を持った仮



[図5] コンデンサの電束電流 (変位電流)と伝導電流

想的な電流が流れるとすれば、この電流とコンデンサの 配線路に流れる電流は連続であると考えられます.

これを電東電流または変位電流と呼んでいますが、こ の変位電流はマクスウェル によって名づけられました (本誌1999年1月号の連載第1回を参照). そして、変位 電流も線路に流れる電流とまったく同じ磁界をつくると

Micro-Stripe の問い合わせ先: KCC 日本支店 (TEL 03-5352-6455), http://www.micro-stripes.com/

注4 電束とは誘電体中(真空も含む)の電気的な状態を表す仮想的な線 で、正の電荷から始まり負の電荷に至る。

注5 イギリスの物理学者 (1831~1879). ファラデーの場の構想をも とに、「電磁場の力学論(1864)」など多くの論文を発表。電磁場 の基本方程式(マクスウェルの電磁方程式)をまとめ、この理論に より電磁波の存在, 光と電磁波の同等性を予言した. http://www.sonnetusa.com/bio/summary.asp