SynaptiCAD WaveFormer Pro

Interactive Verilog Simulator の概要と操作

What is WaveFormer Pro ?

- タイミング・ダイヤグラムの編集と
 スタティック・タイミング・アナライザでの解析
- スティミュラスの生成とシミュレータ ATEのI/Fをサポート VHDL, Verilog, ABEL, Minc, ViewLogic, Mentor, Aldec-Xilinx, SPICE, VCD... HPロジックアナライザ, STIL IEEEテスタ・フォーマット TDML標準化タイミング記述フォーマット(SI2-ECIX) [インターフェース仕様公開 Perl言語で追加/カスタマイズ可能
- ・インタラクティブ Verilog-HDLシミュレータ
- ・マウス操作で入力された波形や論理式などからVerilog
- コードを自動生成
- ・変更ごとに再シミュレーションを自動実行
- ・入力と確認が同時のため RTL設計入力が高効率

WaveFormer Pro 超!簡単な基本操作(1)

基本操作ボタン

ステートの種類を表すボタン

おもな操作は,上記のアイコンで実行できます

WaveFormer Pro 超!簡単な基本操作(2)

まずは時間単位の設定

基本時間単位設定 ダイアログ・ボックス

WaveFormer Pro 超!簡単な基本操作(5)

時間式での波形入力

WaveFormer Pro - untitled.tim - [Diagram] Image: Signal Properties Image: Signal Properties Image: Signal Properties Image: Signal Properties							
時間式入力 により自動生成 された波形	Delay Setup Sample HIGH LOW TRI VAL Hold Text Marker 50ns 100ns	Name: ADDR Properties active low name (adds bar on top, \$BAR suffix) Boolean Equation: ex. (SIG1 and SIG2) delay 5 Clock: Unclocked Edge/Level: neg Clock to Out: 0 Startun State: unknown					
Wfm Eqn ボタン 右に式を入力します		 ◆ Boolean Equation ◆ HDL Code Simulate Once Continuously Simulate Wfm Eqn 20=V (5=Z 10=U)*10 ✓ Export Signal Direction: shared output ▼ VHDL Type: std_logic ✓ Verilog Type: wire ✓ Radix: bin ▼ Bus MSB: 0 LSB: 0 OK Cancel Apply Prev Sig Next Sig 					

WaveFormer Pro 超!簡単な基本操作(6)

バス値の設定

WaveFormer Pro 超!簡単な基本操作(7)

バス値 (ステート名)入力の自動化

WaveFormer Pro 超!簡単な基本操作(8)

RTL設計入力

他の信号の論理演算結果として信号を定義

・ブール式で

•Verilog-HDLで

!! WaveFormer が Verilogコードに変換しWeriWellで自動シミュレーション

WaveFormer Pro 超!簡単な基本操作(9)

Wav 生 万	/eFormer により えされた Verilog コード	<pre>`timescale 1ps / 1ps module testbed(CLK0,START,ADDR,IDLE,READ,WRITE,DONE,ENABLE,COUNT,DBUS,D BUS_INC); output CLK0;</pre>
		reg CLK0; output START; reg START; output [11:0] ADDR; reg [11:0] ADDR; output IDLE; reg IDLE;
WaveFormer Pro - Tu	itsim.tim - [Diagram] Iraw Bue Librariae View Ontions Report Window Help	output READ;
	Delay Setup Sample Lucy Logy The Sample Lucy Simula	reg READ;
Add Clock Add Spacer	High LOW TRI VAL INVAI WHI WLO HEX GOO	OUTPUT WRITE;
507.9ns 426.0ns	Ons 500ns 1.0us 1.5us	output DONE:
CLKO		output ENABLE:
START	\square	output [3:0] COUNT;
ADDR[11:0]		output [15:0] DBUS;
IDLE		output [15:0] DBUS_INC;
READ		reg [15:0] DBUS_INC;
WRITE		integer CLKO stop time:
DONE		integer CLKO_stop_time,
ENABLE		integer CLK0_d1, CLK0_d2;
COUNT[3:0]	▶ 0)(1)(2)(3)(4)(5)(6)(7)(8)(9)(A)(B)(C)(D)(E)(F	initial
DBUS[15:0]	bz))0 1))0 1))0 1))0 1))0 1))0 1))0 1))0 1)1)2)2 1)2)2 1)2)	begin //CLOCK CLK0
DBUS_INC[15:0]	bx 1 1 1 1 1 1 1 1 1 2 1 2 1	CLK0_stop_time = 1999000; CLK0_stfsst = 0;
		$CLK0_0HSEL = 0,$ $CLK0_period = 100000$
•		$CLK0_p chica = 100000$, $CLK0_d utv = 50^{\circ}$
-		CLK0 d1 = CLK0 period * CLK0 duty/100;
		CLK0_d2 = CLK0_period - CLK0_d1;

スティミュラスの自動生成 Verilog コード(1)

Verilog-HDLスティミュラスの生成例を見てみましょう

2.560ns =191.0ns	0ns 50ns 100ns 150ns 200ns
CLKO	
SIGO	
FakeBus	

CLK0 :周期 50[ns]のクロック SIG0 :WaveFormerで扱える全ての波形タイプを含んだ信号 FakeBus :スリー・ステート・セグメントを含んだ仮想バス信号

スティミュラスの自動生成 Verilog コード(2)

Verilog-HDLスティミュラスの生成

石町を凹りし木仔						<u> </u>	-
保存する場所①:	🔁 WaveForm	•	£	<u></u>	d	8-8- 8-8- 8-8-	
폐 Sram.v 폐 Tutsim.v 폐 un titled.v 폐 wavelib.v							
ファイル名(N):	example_v.v				保存	7(<u>S</u>)	
ファイルの種類(工):	Verilog (*.v)s Verilog (*.v)s	 	-		キャン	ven 🛛	
	Spice sources (*.cir)s Spice digital (*.fst)s Spice sources (*.cir)			-			

0 1

スティミュラスの自動生成 Verilog コード(3)

. N

生成されたVerilog-HDLスティミュラス

and the `timescale 1ps / 1ps module testbed(CLK0,SIG0,FakeBus); output CLK0: rea CLK0: output SIG0; reg SIG0; output FakeBus: reg FakeBus; integer CLK0_stop_time; integer CLK0_period, CLK0_duty,CLK0_offset; integer CLK0_d1, CLK0_d2; initial //CLOCK CLK0 beain CLK0 stop time = 223744: $CLK0_offset = 0;$ $CLK0_period = 50000;$ $CLK0_duty = 50;$ CLK0_d1 = CLK0_period * CLK0_duty/100; $CLK0_d2 = CLK0_period - CLK0_d1;$ CLK0 = 1'b0: $#(CLK0_offset) CLK0 = 1'b1;$ while (\$time < CLK0_stop_time) beain $#(CLK0_d1) CLK0 = 1'b0;$ #(CLK0 d2) CLK0 = 1'b1;end end 23

(3 initial //SIGNAL SIG0 beain SIG0 = 1'b1: #35328 S|G0 = 1'b0;#32768 S|G0 = 1'bz: #34816 SIG0 = 1'bx: #33280 SIG0 = 1'bx: #21504 SIG0 = 1'bweak1: #23552 SIG0 = 1'bweak0; #25088 end initial //SIGNAL FakeBus beain FakeBus = 2256: #56320 FakeBus = 1'bz; #48640 FakeBus = 3f4a: #40960 FakeBus = 1'bz: #31232 FakeBus = aabb; #46592 end initial #223744 \$finish: endmodule `~____`

スティミュラスの自動生成 Verilog コード(4)

<u>WaveFormerの大きな特長</u>

・システムのインターフェース はすべてPerl言語で記述
・WaveFormer Pro本体との プロトコル仕様を公開
・カスタマイズ可能
(例)
Verilog-HDLスティミュラスを生成 する Verilog.epl ファイルを見て みましょう

スティミュラスの自動生成 VHDL コード(1)

VHDLでは列挙型もサポート

AddSignal才	、タン VALボタン HEXボタン
💁 WaveFormer Pro – ex	ample_v.TIM - [Diagram]
Eile Export Edit D	raw <u>B</u> us Libraries <u>View Options Report Window H</u> elp <u> </u>
Add Signal Add Bus Add Clock Add Spacer	Delay Setup Sample HIGH LOW TRI VÅL INVal WHI WLO HEX Simulation Zoom In Hold Text Marker Zoom Out
111.1ns 38.40ns	0ns 50ns 100ns 150ns 200ns 250r
CLKO	
SIGO	
FakeBus	
RealBus[7:0]	F2 (32 (ZZ (00 (FF)
enumaration	IDLE)(WAIT)(READY)(48
I .	

スティミュラスの自動生成 VHDL コード(2)

TransportとWaitでスティミュラスを生成してみましょう

石町で白りて休任				
保存する場所(1):	🔁 WaveForm	•	🖻 💆	
Sram.v				
and rutsim.v				
🔊 wavelib.v				
」 ファイル名(N):	example tyhd			保存(S)
ファイルの種類(工):	VHDL Transport (*.vhd)s		-	キャンセル
	VHDL Wait (*.vhd)s		_	
	VHDL Transport (*.vhd)s Verilog (*.v)s		_	
	Spice sources (*.cir)s		-	

.....

スティミュラスの自動生成 VHDL コード(3)

Transport文

	•
architecture test of testbench is	
begin	
process	
Degin Oliko lok	
GLKU <= 0;	
wait for U hs;	
while true loop	
GLK0 <= '1';	
wait for 25 n s;	
GLK0 <= '0';	
wait for 25 ns;	
end loop;	
end process;	
process	
begin	
transport 11,	
0° after 35.328 ns,	
"Z" after 68.096 ns,	
"X" after 102.912 Ins,	
"X" after 136.192 ns,	
H after 157.696 ns,	
L after 181.248 hs;	
FakeBus <=	
IT all sport 2200,	
314a atter 104.96 ns,	
2 atter 145.92 ns,	
aadd after 177.152 ns;	

Wait**文**

architecture test	t of testbench is	
begin		
process		
begin		
CLK0 <= '0';		
wait for 0 ns;		
while true loo	р	
CLK0 <= '1';		
wait for 25 n	s;	
CLK0 <= '0';		
wait for 25 n	S;	
end loop;		
end process;		
process		
begin		
SIGO	<=	'1';
FakeBus	<=	2256;
RealBus0	<=	'0';
RealBus1	<=	'1';
RealBus2	<=	'0';
RealBus3	<=	'0';
RealBus4	<=	'1';
RealBus5	<=	1;
RealBus6	<=	1;
RealBus/	<=	1'; IDLE:
enumaratio	() <=	IDLE;
	walt for 35.328	ns;
SIGO	<= '0';	
	wait for 20.992	ns;

インタラクティブ・シミュレーション(1)

中規模の設計なら RTL入力機能ですばやくモデリングが可能

インタラクティブ・シミュレーション(2)

シミュレーション波形とVerilog-HDLコードの同時出力

🙅 WaveFormer Pro – Tutsim.tim		
<u>F</u> ile Export <u>E</u> dit <u>D</u> raw <u>B</u> us <u>L</u> ibraries ⊻iew <u>O</u> ptions <u>R</u> eport <u>W</u> indow <u>H</u> elp		
Report - C:¥WaveForm¥Tutsim.v	💁 Diagram	
wire IDLE_w3 = (WRITE & DONE) (~START & IDLE); registerN #(1,0,0) registerN_IDLE(IDLE,CLK0,IDLE_w3,1'b1);	Add Signal Add Bus Add Clock Add Spacer	Delay Setup Sample HIGH LOW TRI VAL INVal ₩H ₩L0 HEX Simu Hold Text Marker HIGH COW TRI VAL INVal ₩H ₩L0 HEX Gd
wire READ_wf1 = (IDLE & START)I (WRITE & ~DONE); registerN #(1,0,0) registerN_READ(READ,CLKD,READ_wf1,1'b0);	1.638us 544.8ns CLK0	0ns 500ns 1.0us 1.5us
wire WRITE_wf85 = READ; registerN #(1,0,0) registerN_WRITE(WRITE,CLK0,WRITE_wf85,1'b0);	START ADDR[11:0]	
assign_DONE = &COUNT ;	IDLE	
assign_ENABLE = READ WRITE ;		
reg [3:0] COUNTER; //declare a 4-bit register called COUNTER always @(negedge CLKD) //on each falling edge of CLKD	DONE	
begin if (ENABLE) COUNTER = COUNTER + 1; // count while ENABLE is high	COUNT[3:0]	→/ • 0 (1)(2)(3)(4)(5)(6)(7)(8)(9)(A)(B)(C)(D)(E) • 700(1)(0)(1)(0)(1)(0)(1)(0)(1)(1)(2)(1)(2)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)
erse COUNTER = 0; // synchronous reset if ENABLE is low end	DBUS_INC[15:0]	
assign COUNT = COUNTER; //drive wire COUNT with reg COUNTER value		
wire CSB = IENABLE; sram BinMem1(CSB,READ,ADDR,DBUS[7:0]); sram BinMem2(CSB,READ,ADDR,DBUS[15:8]); assign DBUS = WRITE ? DBUS_INC : 'hz;		
wire [15:0] DBUS_INC_wf2 = DBUS + 1 ; latchH #(16,0,0) latchH_DBUS_INC(DBUS_INC,READ,DBUS_INC_wf2,16'bxxxxxxxxxxxxxxxxxx)		
INS Row: 1 Line: 106 Col: 1	-	
<u></u>		
Parameter 📕 🗆 🔀		