

第2部ではハードウェアを中心に解説してきました.この第3部では、ソフトウェアの開発について 説明します.最初に、ソフトウェア開発全体の流れを解説します.そのあと、統合開発環境Code Composer Studio(CCS)の基本的な機能について、コンパイルして実行ファイルを作り、デバッグを 行ってからベンチマークをとるまでの流れで説明します.この章を理解すると、CCSがもっているさ まざまな機能を使って、DSP上でプログラムを動作させ、デバッグ/ベンチマーク計測ができるよう になります.

10-1 ソフトウェア開発の流れ

ディジタル信号処理の新しいアルゴリズムは、通常、研究所で研究/作成され、C/C++のプログラ ムで、パソコンやワークステーション上で評価している場合が多く見受けられます。研究者はアルゴ リズムを考えることが仕事ですから、その検証手段は特定はされません。しかし、実際の組み込みシ ステムを構築する場合、どうしても、いろいろと制約が付いてしまいます。ときにはシステムに搭載 しているメモリが少なかったり、ときには筐体が小さく発熱(消費電力)を抑えることが必要だったり します。そこで、パソコンより低消費電力で高性能なDSPによるシステムが登場するわけです。

この場合組み込みユーザは、パソコンやワークステーション上で実現しているC/C++のプログラム をC6000 DSP上でコンパイル、実行させることから始まります.もちろん、検証用の入力データと その結果を用意し、正しく動作するまでデバッグしていきます.

正しい動作を確認した後、プログラム最適化とベンチマーク(実行速度)計測を繰り返し行い、満足のいく性能まで向上させます(図10-1). プログラム最適化は、コンパイラの最適化オプションを付け/キャッシュをONにするといった、基本的な最適化から始めます.その後、さまざまな最適化手法や、Code Composer Studioに付属しているツールで高速化していきます(第11章,第12章参照).プログラムの高速化はC6000 DSPの場合、ほぼ100%、C言語上での最適化となります.

C6000 DSPの場合、プログラム最適化前は、思っていたような性能が出ていないはずです.しか

図10-1 ソフトウェア開発フロー

し最適化後は(アルゴリズムに依存するが)数十倍の速度を得ることも十分可能です.

これらのアルゴリズムが満足のいく性能まで向上させるとともに、これらを含んだシステムとして、 プログラムを構築します. TI社ではDSP/BIOSというリアルタイムOS(RTOS)が無償提供されてい ます. その後、システムとしてのデバッグ/最適化を行います.システム全体でのリアルタイム解析機 能も用意されています. これで、プログラムは完成です.

まとめると、次のようなソフトウェア開発の流れとなります.

①パソコン/マイコンで作成したC言語プログラムを、DSP上でコンパイル/デバッグ

②ベンチマークを取りながら最適化を行い、満足のいく性能まで向上させる

③これらのプログラムを組み込み、システムとして構築、デバッグ、システム全体の最適化

第3部では、上記の流れにそって、CCSの基本的な使い方から、プログラム高速化の方法、DSP/ BIOSを使ったシステム構築/最適化まで解説します.

10-2 シミュレータ,エミュレータ,DSKの違いの詳細

DSPのプログラムを評価するためには、大きく分けて次の3種類があります。

- 1. パソコン上で動作するシミュレータを使って評価する場合
- 2. 実機上でエミュレータを使って評価する場合(図10-2)

3. TIが提供する安価な評価環境 DSPスタータ・キット (DSK)を使用する場合

1番目は,「シミュレータ」で, パソコン上でDSPのプログラムをシミュレーションします.

2番目は、ユーザが作成したDSPボード上にJTAG端子を出してXDS510-USBやXDS560などの JTAG対応のエミュレータを接続します.このエミュレータ経由で、ボードに搭載されているDSP上

図10-2 エミュレータ経由での評価環境

での評価を行うことができます.この場合,動作するDSP搭載ボードとエミュレータが必要です.

3番目は、DSPスタータ・キット(DSK)を使った場合です.このDSKは、ボード上にエミュレータの回路が組み込まれていると考えてください.ユーザは、USBケーブルでパソコンとDSKを接続するだけで、DSK上に搭載されているDSPの評価を行うことができます.

これら3種類とも、まったく同じTI DSPの統合開発環境 Code Composer Studioの環境で評価で きます.ドライバを選択するだけで、シミュレータやエミュレータ、DSK に対応できます.この選択 は「CCS Setup」で、CCSを起動する前に行います.

10-3 CCS Setup

とりあえず, CCS Setupを立ち上げてみましょう. CCS3.1では,図10-3のような画面が表示されます.

一番左の「System Configuration」欄には,現在選択しているドライバ(この図では,DM642の Simulatorを選択),真ん中の「Available Factory Boards」には,インストールされているドライバ

🖗 Code Composer Studio Setu	p						×
<u>F</u> ile <u>E</u> dit <u>V</u> iew <u>H</u> elp							
System Configuration	Ausilable Esotory Pearde	Family	Platfo	Endia	^	My System	^
	Available Factory boards	C64×: 🕶	All 🔻	All 💌			
📮 My System	C6414 Device Cycle Acc	C64xx	simula	little		DM642 Device Cycle Accurate	
E BM642 Device Cycle Accurate	C6414,15,16 Rev 1.0x XD	C64xx	xds51	*		Number of Devices:	-
- S DM642	E3:C6414,15,16 Rev 1.0x XD	C64xx	xds56	*		1	=
	C6415 Device Cycle Acc	C64xx	simula	little			
	C6416 DSK XDS510 PP	C64xx	pp em	*			
	C6416 DSK XDS510 USB	C64xx	xds51	*			_
	Berge C6416 DSK-USB	C64xx	dsk	*			
	C6416 Device Cycle Acc	C64xx	simula	little			
	C64xx CPU Cycle Accur	C64xx	simula	little			
	EmiC64xx PP Emulator	C64××	pp em	*			
	C64xx SPI525 PCI Emula	C64××	spi525	*			
	C64xx XDS510 Emulator	C64xx	xds51	*			
	C64xx XDS510USB Emul	C64xx	xds51	*			
	C64xx XDS56U Emulator	C64xx	xds56	*			
	DM642 Device Cycle Ac	C64xx	simula	little			
	DM642 EVM XDS510 ISA	C64xx	xdsb1	*			
	INFOMOSE EVM XUSSIU PP	C64xx	ppem	*			
	INFOMO42 EVM XUSSIU US	C64xx	XOSOI	*			
	LEBED MO42 EVM AD3500 FOL.	004XX	XUSOU	*	v		_
		atom Daa	ula 🔿 d	Queste Desi	÷.		~
	Be Factory Boards	ISUM DUA		oreate bua			1
Save & Quit Remove	Add << Ad	dd Multiple				Modify Properties	
Drag a device driver to the left to add a	board to the system.						

図10-3 CCS Setupの画面

が表示されます.新しくモードを切り替える/ドライバを入れ替える場合は,現在選択しているドライ バを消去し,新しいドライバを追加します.たとえば,C6416-DSK上でCCSを立ち上げたいときに は,「System Configuration」内のMy Systemsにあるドライバを選択し下のRemoveボタンを押し て現在のドライバを削除した後,「Available Factory Boards」内のC6416-DSK-USBを選択して,下 の<< Addボタンを押すと, My Systemsに組み込まれます.マウスを使って,C6416-DSK-USBド ライバをドラッグ&ドロップでMy Systemsにもっていっても組み込み可能です.これで,シミュレー タ/エミュレータ/DSKの選択は終了です.

10-4 GEL(General Extension Language)ファイル

CCSを立ち上げる前に、もう一つ行うことがあります. それは、CCS起動時の各ボードの設定や、 ボードに合わせたCCSの設定です. これは、C言語ライクなスクリプト言語 GEL (General Extension Language)を用いて設定できます. C6416T-DSKやC6713-DSKの場合、ボードに合わせて設定を記述 したファイル「GELファイル」が定義されているので、何もする必要はありません. しかし、ユーザ が作成したボードの場合、設定を変更したいときは、その設定にあったGELファイルを作成する必要 があります. この作成したGELファイルは、ドライバで選択しているプロセッサのPropertiesで指定 しています(図10-4).

GELはC言語ライクなスクリプト言語になっており、C言語を知っている人であれば簡単に理解で きるようになっています(ユーザ定義の関数やif文も可能). CCSへの設定は、「GEL_」から名前が始

🍘 Code Composer Studio	Setup								
<u>E</u> ile <u>E</u> dit <u>V</u> iew <u>H</u> elp									
System Configuration	Current Procces D	Priver Location	0						
My System C64xx XDS510USE	cessor Properties	Þ	C pe:						
cpu_0	Property	Value	=						
	GEL File	C:\CCStudio_v3.1\cc\gel\dsp641x.ge	Studio_v3.1\cc\gel\dsp						
	Master/Slave	N/A	ave:						
	Startup Mode	Stop-mode							
	Change property value as nece Summary	ssary in the right column.	ode: mode						
	ОК	Cancel							
			>						
Save & Quit Remove Kadd Kultiple Modify Properties									
Select the system node to add a	new board to the system confi	guration.	11.						

図10-4 ドライバで選択しているプロセッサのプロパティ

表10-1 GEL callback 関数

関 数	説 明					
StartUp()	CCS 起動時に実行される					
OnTargetConnect()	CCS 上から Connect を行ったときに実行される					
OnReset(int)	CCS 上から DSP RESET を行ったときに実行される					
OnPreFileLoaded()	CCS からプログラムをロードする前に実行される					
OnFileLoaded(int , int)	CCS からプログラムをロードした後に実行される					
OnRestart(int)	CCS 上から RESTART を行ったときに実行される					
OnHalt()	CCS 上から Halt を行ったときに実行される					

まるGEL 関数で行います.このGEL 関数はCCS上でのコマンドに対応した関数を用意しており,CCS への各種設定を行えます.GELの文法を組み合わせ,ユーザのボードに合わせた初期設定を記載したり,よく使用するコマンド群をユーザ定義のCCSメニューに入れることもできます.

また**表10-1**のように、CCS上で特定のコマンド実行時に起動されるGEL callback 関数が規定されています.これらの関数内にはCCSの設定やボードの設定を記載します(Connectなどのコマンドについては後で説明する).

ここで,設定が必要な二つの関数について説明します.一つ目はStartUP 関数で,CCS起動時に 実行されます.この関数では,必ずDSPから見たメモリ・マップの設定をCCSに教える必要がありま す.これには,内部RAMや内部ペリフェラルの設定空間もすべて必要です.メモリ空間をCCSに教 えないと,ロード時にエラーが生じたり正しくメモリの内容を表示しなかったりするので,必ず設定 してください.このメモリ・マップの設定を行うために,GEL_MapOn/GEL_MapReset/GEL_MapAdd などのGEL 関数が定義されています.**リスト10-1**に例を示します.

二つ目はOnTargetConnect()関数で、エミュレータがDSPに接続しにいく(Connect)ときに実行 されます.通常は、エミュレータを接続したらすぐにすべてのメモリ空間を表示できるように、EMIF

Column…10-A CCSのHelpはお勧め

ソフトウェアを開発しているときにDSPに関し て調べたい内容があった場合は、Code Composer StudioのHelp機能をお勧めします.CCS上の メニューのHelp->ContentsもしくはWindowsの スタート・メニューのTexas Instruments->Code Composer Studio 3.1->Documentation->TMS320C64x Help(CCS3.1の場合)で立ち上がります.

このHelpには、GELを含むCCSの機能はもち ろん、C標準ライブラリの説明やチュートリアル、 後で説明する DSP/BIOS や Chip Support Library の API, ディジタル信号処理ライブラリや画像処 理ライブラリの API, C6000 コアの命令セットま で幅広く記載されています. とても便利な Help 機 能です. 何か分からない単語があれば, Helpで調 べることをお勧めします. CCS3.1 から, C6000 DSPの Help は3分割され, C62x, C64x, C67x そ れぞれの Help となっています.

リスト10-1 GEL 関数の例

リスト10-2 EMIFの設定例

```
OnTargetConnect()
{
    #define EMIFA_GCTL 0x01800000
    #define EMIFA_CE0 0x01800008
    #define EMIFA_SDRAMCTL 0x01800018
    #define EMIFA_SDRAMEXT 0x0180001c
    #define EMIFA_SDRAMEXT 0x01800020
    *(int *)EMIFA_GCTL = 0x00052078;
    *(int *)EMIFA_CE0 = 0xfffffd3; /* CE0 SDRAM */
    *(int *)EMIFA_SDRAMCTL 0x57115000; /* SDRAM control */
    *(int *)EMIFA_SDRAMTIM = 0x0000081b; /* SDRAM timing (refresh) */
    *(int *)EMIFA_SDRAMEXT = 0x001faf4d; /* SDRAM extended control */
    /* ... */
}
```

の設定を行います.とくにSDRAMを搭載しているボードは,EMIFの設定をしないと正しく表示で きません.EMIFの設定は,C言語のポインタの記述で指定できます.ほかにもPLLやボード固有の 設定を行います.リスト10-2に例を示します.

ほかのCallback関数では、OnReset関数にはEMIF 設定を記載したり、OnPreFileLoaded() 関数へは、DSP自身をRESETするGEL_Reset()関数とEMIF 設定を記載したりします.GEL関数や GEL文法の詳細については、CCSのHelp Fileを見てください.また、GELファイルのサンプルは、 ¥CCStudio v3.1¥cc¥gel(CCS3.1の場合)を参照してください.

10-5 CCSを立ち上げる前に

CCS Setupでドライバ/GELの設定が終わりました.シミュレータの場合は、このほかに動作周波数など、DSP自身の詳細な設定もできます(図10-5).

先ほどのGELファイルの設定時の画面で,表10-2のような設定が可能です.

XDS510-USBやXDS560エミュレータの場合,エミュレータとDSP搭載ボートを接続して,ボード

ocessor Properties		(
Property	Value	
Simulator Type	Functional	~
CPU Clock(MHz)	Not Applicable	
EMIF Clock(MHz)	Not Applicable	100
Simulate Cache	Yes	
Rewind	ON	-
Rewind Trace	In Memory	
Detect CPU Resource Conflicts	Yes	
Change property value as necessa Summary	ry in the right column.	×
Tips: - Use init64xxsim.gel - Select Cycle Accurate simulator: - Turning off cache simulation imp - Switch Rewind Types learning to	s to get precise cycle information. roves simulation speed.	<
OK	Cancel	

図10-5 シミュレータでのプロセッサのプロパティ

表10-2 シミュレータでの設定

GEL ファイルの設定	ファイル名の指定
デバイスの設定	このドライバでシミュレーションできるデバイスを選択
シミュレータの動作設定	Cycle Accurate(正しくサイクル数を計測) もしくは, Functional(コアのみシミュレーション)
CPUクロック	CPUコアの動作周波数を設定
EMIF クロック	EMIFクロック周波数を設定
CPUリソース・コンフリクト	検出する / しない
Reserve メモリ・アクセス	検出する / しない
エンディアン	リトル・エンディアン、もしくはビッグ・エンディアン

181	DM64	2 Dev	ice Cyc	le Accu	rate	Simulat	or/DM6	i42 - I)M642 (Si	mulator)	– Code	Compos	er Sti	udio		
<u>F</u> ile	<u>E</u> dit	⊻iew	<u>P</u> roject	<u>D</u> ebug	<u>G</u> EL	Option	Profile	Tools	DSP/BIOS	Window	<u>H</u> elp					
省	Ê.	1 %	Þ C	$ \sim \sim$					•	1 A 14	7 ₁₀ 🙀	4 6	\?	=(+ ≡(+	(2 (2) (2 (2)) (2 (2))	
			Ŧ				- 4) 🖽 H	* * •)	2 8	8	R.				
Ę.	66^	Ö	🛛 ei 🛛	i s	व हा											
6 6 6 6 6	₽	iles GEL Proj	files ects													

図10-6 CCSの起動直後の画面

の電源を入れてDSPを起動しておく必要があります.DSKの場合も,同じようにDSKとパソコンとをUSBケーブルで接続し,DSKの電源を入れてください.

さあ、CCSを実行してみましょう.図10-6のような画面が立ち上がります.

