

ビデオ出力や3軸加速度センサによる センシングを行うゲーム機を設計

山崎 尊永

ここでは,本誌 2007 年 5 月号付属の V850 マイコン基板を用いた,カラー表示ビデオ・ゲーム機の製作事例を紹介す る、本ゲーム機は、NTSC ビデオ信号によるテレビへのカラー画像表示や3軸加速度センサを利用したゲーム操作などが 行える.今回は, V850 マイコン基板に周辺回路を追加し, 実際に動作させるまでを解説する.

本誌 2007 年 5 月号付属の V850 マイコン基板を用いた 応用例として、カラー表示のビデオ・ゲーム機を製作しま した. V850ES/JG2 は動作周波数が 20MHz と 32 ビット RISC マイコンの中では最もローエンドに位置するもので すが,内蔵RAM容量が比較的大きく周辺機能が多いのが 特徴です.これを生かして,なるべく少ない外付け部品で ビデオ・ゲーム機を実現しようと試みました. ちまたで大 人気の家庭用テレビ・ゲーム機に使われているのと同じよ うな加速度センサを使い、本ゲーム機をゆらゆら傾けるこ とでゲームを操作します、図1に本ゲーム機の外観を示し ます.ソース・プログラム一式は,本誌のWebサイト (http://www.capub.co.jp/interfce/)からダウンロー ドしてください.

1. ハードウェアの設計

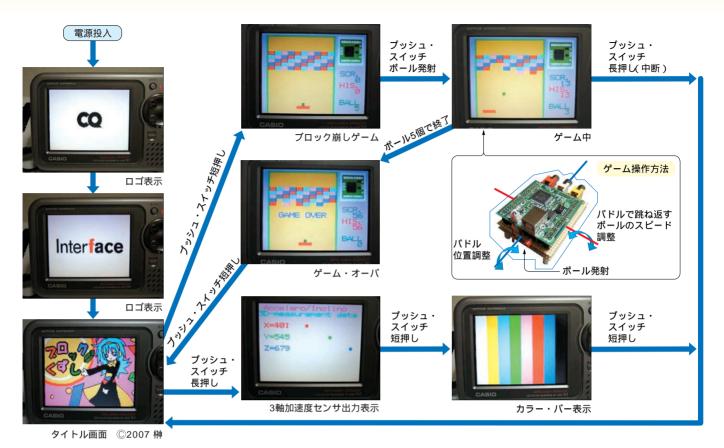
加速度センサとスイッチ 1 個でゲームを操作 本ゲーム機の仕様を表1に示します.ビデオ出力は, NTSC(National Television System Committee)コンポ ジット信号なので,お手持ちのテレビに直結できます.

メイン・コンテンツは, ちょっとレトロな「ブロック崩 しゲーム」です、ほかに、加速度センサの各軸の出力をリ アルタイムで表示するコンテンツと、ビデオ信号出力をオ シロスコープで観測するのに便利なカラー・バーを表示す るコンテンツを用意しています.ブロック崩しゲームは, プッシュ・スイッチでボールを発射し,基板の傾きでパド

(a) 小型液晶テレビに接続した例

左から, NTSCコンポジット・ビデオ出力, 音声L出力,音声R出力が並ぶ

(b) ゲーム機の外観1



手前に飛び出ている赤いプッシュ・スイ ッチは,動作モードの変更とブロック崩 しのボール発射用.ゲームの主な操作は, 基板の傾きを加速度センサで検出するこ とにより行う

(c) ゲーム機の外観2

図1 試作機の外観

V850 マイコン基板とほぼ同サイズに回路を仕込んである.試作した基板は2枚構成で,メイン基板と電源基板を背中合わせに重ねてある.電源基板は電池ボックスを載せるため のものである.

図2 操作方法と画面表示例

タイトル画面表示中に,ブッシュ・スイッチを短く押せばブロック崩しゲームが始まる.ブッシュ・スイッチでボールを発射し,基板の左右の傾きでパドルを操作する.ボールがパドルに当たる位置によって,跳ね返る角度が変わる.また基板の前後の傾きによって,パドルでボールを跳ね返すときのスピードを変えられる.ゲーム中,ブッシュ・スイッチを長く押せば,いつでも中断してタイトル画面に戻ることができる.

タイトル画面表示中に , ブッシュ・スイッチを長く押せば , 3 軸加速度センサ出力表示を開始する . 基板を揺らしたり傾けたりしたときの 3 軸加速度センサの出力値をリアルタイムに読み取れる . さらにブッシュ・スイッチを短く押せば , カラー・バー表示になる . このときオシロスコープでビデオ信号を観測してみると NTSC 信号の様子を理解できる . もう1回ブッシュ・スイッチを短く押せば , タイトル画面に戻る .

ルを操作します.

画面は 160 ドット× 120 ドット, 256 色です.この表示能力は,本 V850 マイコンが最低限の外付け回路で出せるぎりぎりの値です.フレーム・メモリを格納するマイコン内蔵の RAM 容量と CPU 性能から決まりました.

図2に本ゲーム機の操作方法を示します.コンテンツの 切り替えはプッシュ・スイッチを短く押したり(短押し), 長く押したり(長押し)して行います.

ブロック崩しのパドルを左右に動かす操作は,USBコネクタを手前に向けて,基板を左右に傾けることで行います.パドルからボールを発射するときは,プッシュ・スイッチを押します.そのときの基板の前後の傾き方でボールのスピードが変わります.ボールをパドルで打ち返すときは,当てる位置でボールの跳ね返り角度を,基板の前後の傾きでボールのスピードを変えられます.

表 1 カラー表示ビデオ・ゲーム機の仕様

No.	項目	内容
1	コンテンツ	ブロック崩しゲーム 3 軸加速度センサ出力表示 カラー・バー表示
2	ビデオ出力	NTSC コンポジット・ビデオ信号 解像度: QQVGA(160 × 120 ドット) 表示色: 256 色(R:G:B=3:3:2)
3	サウンド出力	ステレオ・サウンド出力
4	ゲーム操作	3軸加速度センサによる基板傾きの検出
5	そのほかの操作	プッシュ・スイッチ × 1 個
6	電源	単4アルカリ乾電池×4本
7	使用マイコン	NEC エレクトロニクス V850ES/JG2 (μPD70F3716GC)

1面当たり50個のブロックがあり,失敗せずに連続して面をクリアしていくとボール・スピードが速くなっていきます.皆さんは何点までハイ・スコアを伸ばせるでしょうか?

Interface July 2007