第9章

ミックスト・シグナル回路検証を体験する

■Dolphin Integration 社のミックスト・シグナル回路シミュレータ「SMASH I■

倉重克己

ここではミックスト・シグナル(アナログ・ディジタル混在)回路の検証工程 を体験していただきます、最近ではアナログ回路のモデリングにVHDL-AMSなどの設計言語が利用され始めています。そこで、本チュートリアル ではVHDL-AMSやC言語を利用したアナログ・ビヘイビア記述について触 れます. ここで使用するツールは、フランスDolphin Integration社のミッ クスト・シグナル回路シミュレータ[SMASH]です。このツールはVHDLや Verilog HDLのディジタル・モデル、およびSPICEのアナログ・モデルも 取り扱えます。本シミュレータの評価版とサンプル回路は、本誌付属のCD-ROMに収録されています. (編集部)

ボードの記事

現在では、一つのシリコン・チップ上にディジタル回路 とアナログ回路が混在していることは珍しくありません.

従来、こうしたチップを検証する際には、ディジタル部 とアナログ部を別々にシミュレーションし、両者のインタ ーフェース部については試作チップを製作してその整合性 を確認することが一般的でした。また、アナログ回路の規 模が大きいチップの場合、SPICEシミュレーションに膨大 な時間がかかります。 そのため、チップ全体のシミュレー ションを十分に行わないまま、試作チップを製造して動作 を確認することも珍しくありませんでした。当然のことな がら、試作チップを製造すると、コストと時間がかかりま す. そこで、ディジタル回路とアナログ回路の結合シミュ レーションやチップ全体のシミュレーションは必要不可欠 となってきています.

最近のミックスト・シグナル対応の回路シミュレータは、 このような場合のモデリングやシミュレーションに対応し ています。ディジタル信号とアナログ信号を結合する機構 や、広い抽象度をカバーするモデリング環境がEDAベン ダから提供され、ミックスト・シグナルのトップダウン設 計も現実のものとなってきました.

SPICEはアナログ回路検証の絶対的な標準ですが、設計 抽象度という点では低い水準の表現にしか対応していませ ん、そこで、SPICEとVHDL-AMS(VHDLのアナログ/ミ ックスト・シグナル拡張)を組み合わせて、SPICEの資産 の継承と、幅広い設計抽象度を利用したモデリングを両立 させる手法が提案されています. 本記事では、こうした SPICEやVHDL-AMSのモデル、さらにはディジタル用の ハードウェア記述言語であるVHDLやVerilog HDLのモデ ルを組み合わせて検証する手法について解説します。

使用するツールとサンプル回路

まず、本チュートリアルで使用するツールとサンプル回 路について紹介します.

●複数の言語に対応した回路シミュレータを利用

本チュートリアルではフランスのDolphin Integration社 が開発した「SMASH」を使用します。これは、VHDL-AMS、

〔表1〕 各設計言語の比較

設計分野別に異なる設計言語があり、歴史の長 い言語は多くの設計資産を抱えている. 回路規 模が拡大し、設計資産の再利用が重要な課題に なっている. そのため、多くの言語を取り扱え る設計環境が求められている。

設計言語	VHDL, Verilog HDL	VHDL-AMS, Verilog-AMS	SPICE	C言語
信号の種類	ディジタル	アナログ	アナログ	アナログ、ディジタル
設計抽象度	ビヘイビア・レベル 〜ゲート・レベル (スイッチ・レベル)	ビヘイビア・レベル ~トランジスタ・ レベル	トランジスタ・レベル	アルゴリズム・レベル 〜ビヘイビア・レベル (RTL)
普及度	普及している	まだ普及していない	普及している	まだ普及していない
過去の 設計資産	多い	少ない	多い	少ない (アルゴリズム・ レベルの資産は多い)

SPICE (Berkeley Spice 2G互换), VHDL, Verilog HDL, C言語といった複数の設計言語(記述フォーマット)に対応 したミックスト・シグナル回路シミュレータです。 本シミ ュレータが対応する言語の概要を表1にまとめます。また、 本シミュレータには図1(a)のような自由度があるので、図 1(b) のようなモデルを一括して検証できます.

こうした複数の言語に対応したミックスト・シグナル回 路シミュレータには、以下のような利点があります。

1) シミュレーション速度が上がる

設計抽象度の高いモデルは、シミュレーションに対する 負荷が小さいので、一般にシミュレーション速度が上がり ます。シミュレーション速度が上がれば、チップ全体のシ ミュレーションも行いやすくなります.

2) 動作を確認しながら段階的に回路を実現できる

設計抽象度の高いモデルを作成して, まず仕様の確認や 実現方法の検討を行い、その後、徐々に抽象度を落としな がら回路構成を決めていくことができます.

3) ディジタルとアナログの両方を含む回路を検証できる アナログ部はVHDL-AMS (またはSPICE) でモデリング し、ディジタル部はVHDLでモデリングすれば、ディジタ

ル回路とアナログ回路をいっしょに検証できます.

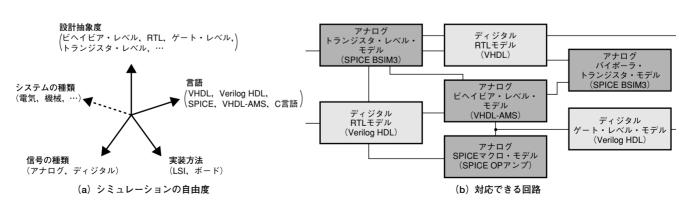
4) 過去の設計資産やIPコアを扱いやすい

過去の設計資産は、多くの場合、SPICEやVHDL、Verilog HDLで作成されています、そのため、ほとんどのモデルを 本シミュレータに取り込むことができます.

5) LSIだけでなくボード全体を検証できる

OPアンプや74シリーズなどのモデルが用意されている ので、ボード全体をモデリングすることが可能です。

6)機械系などと結合してシミュレーションできる


VHDL-AMSは、電気系だけでなく、機械系や流体系など のモデリングにも対応しています。そのため、本シミュレ ータを自動車の電装系やMEMS (micro electro mechanical systems;シリコン技術を使ったマイクロマシン)のモデリ ングやシミュレーションにも利用できます.

なお、SMASH 5.0.0評価版 (ライセンスがない状態の機 能限定版)のインストール方法、および回路規模の制限に ついては、付属CD-ROMに収録されているreadme1st.txt (SMASHが収録されたフォルダにある)を参照してください。

●サンプル回路はAMS, Verilog, SPICE, Cの組み合わせ このチュートリアルのサンプル回路は、いろいろな言語 のわかりやすいモジュールを集めたものです(回路的には あまり意味はない). VHDL-AMS, Verilog HDL, SPICE, C言語の各モデルを含み、プリント基板とLSIの両方にま たがるミックスト・シグナルの小さな設計例です。SMASH 5.0.0評価版でも問題なくシミュレーションを実行できます.

ミックスト・シグナル・シミュレーションの実際

本誌付属のCD-ROMには「SMASH操作チュートリアル」 というpdfファイル(本記事関連データが収録されているデ ィレクトリの下のrcフォルダの中のtut rc.PDF) が収録さ れています。まず、これを確認して、本シミュレータの操 作の基本とSPICEシミュレータとしての使いかたを理解し てください. 収録されているチュートリアルでは、図2(a) の回路の動作点解析、過渡解析、AC解析、パラメータ・ス

〔図1〕SMASHにおけるシミュレーションの自由度

ミックスト・シグナル回路シミュレーションには,高い自由度が要求される.SMASHは,(a)に示すように,多様な設計抽象度,多様な言語,LSI実装/ボード実 装、アナログ信号/ディジタル信号を取り扱うことができる、そのため、(b)のようなモデルを一括してシミュレーションできる。