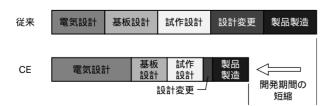
コンカレント・エンジニアリングを 実践しよう


開発期間短縮とコスト・ダウンに不可欠

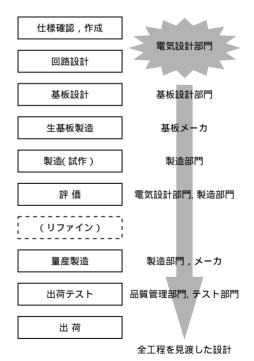
坂田秀幸

最近、製品開発のさまざまな工程を同時に考慮することが、開 発期間の短縮やコスト・ダウンを図るうえで重要になっていま す. このような設計手法は、コンカレント・エンジニアリング (CE)と呼ばれています. ここでは、主に回路設計を対象に、 具体的な例をいくつか挙げながら、後工程を考慮した設計がい かに製品開発において重要であるかを説明します. (筆者)

コンカレント・エンジニアリングとは、製品開発の初期 段階から各部門が密にコミュニケーションを図り、商品企 画,設計,試験,購買,製造,品質保証,保守サービス, 環境,廃棄,回収のすべての要素を考慮することで,作業 の手戻りを最小限に抑えようという考えかたです(図1).

一般的な製品の開発工程を図2に示します、管轄部門の 切り分けについては、しごとの環境によって多少の違いは あっても、大きく違わないと思います、コンカレント・エ ンジニアリングを実現するためには,各部門のコミュニ ケーションが重要になります、実際には、設計の上流に位 置し、ものを具現化する役割を担う回路設計者が幅広い知 識を持って、後工程を考慮した設計を行えるかどうかで、 大方の結果が決まってしまうといっても過言ではないでし

図1 コンカレント・エンジニアリングの概念


コンカレント・エンジニアリング(CE)では, 開発の初期段階において下流 工程の問題点に対処するため,大きな変更はほとんど発生しない.また,製 造性,作業性も考慮して設計を行うので,後工程の作業時間が短縮する.結 果として,図に示すように開発期間を短くでき,コスト削減につながる.

ょう.

これから設計者として身を立てていこうと考えている新 人エンジニアの方々には,回路設計だけでなく他部門のし ごとや技術を広く理解して、滞りのない設計を行えるコン カレント・エンジニアを目指してほしいと思います.

基板設計を理解した回路設計

回路設計者が作成するもっとも重要なドキュメントは回 路図でしょう.回路図を書くうえで重要なことは,見やす

図2 一般的な製品の開発工程

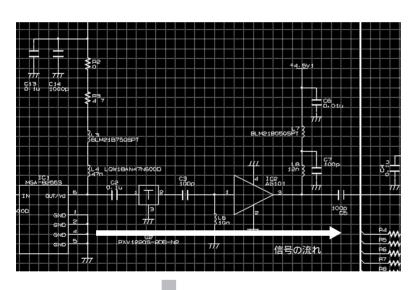
製品開発工程の上流にいるのは回路設計部門、コンカレント・エンジニアリ ングを実現できるかどうかは、回路設計者が開発工程全体を考慮した設計を 行えるかどうかにかかっている.

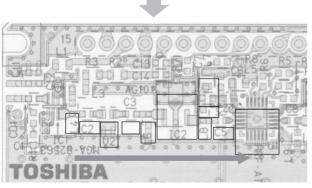
基板や実装のわかる回路設計者になろう!

く書くということです、それは、回路設計者なら理解でき るという程度の見やすさではいけません.回路図はプリン ト基板設計,製造,調整,テスト,サービスなどの部門の 担当者も見ます.各部門におけるしごとの内容を理解し, そこで回路図がどのように使われるのかを理解したうえで, 見やすい図面になっていることが必要です.

● 回路図の書きかた一つでだいぶ違う

例えば,回路設計の次の工程であるプリント基板設計で は、提出された回路図から部品配置や配線レイアウトを検 討します.したがって.これらの情報をいかに回路図内に 表現できるかによって、基板設計にかかわる工数やできば えがだいぶ変わってきます.


まず,最低限必要なことは,なるべく機能ブロックが明


快になっていることです、そして機能ブロック間のつなぎ がわかる接続図が必要になります.

また,部品の配置イメージを回路図に反映させることも 必要です.特にアナログ回路や高速ディジタル回路の場合, 要求される性能を実現するために、部品の配置や配線パタ ーンが非常に重要です.このような場合,回路設計者が詳 細指示書を作成しなければなりません.

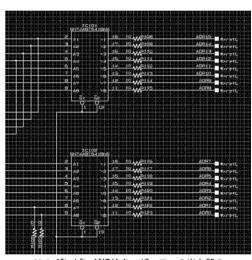
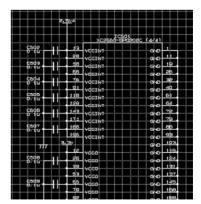

場合によっては,部品配置やパターンの下書きを行う必 要もあるでしょう.下書きを用意すれば,回路設計者の意 図が直接基板設計に伝わるため,作業の手戻りが発生しに くくなります、しかし、当然ですが、回路設計者がプリン ト基板設計の知識を持っている必要があります。また、そ れを作成する工数が回路設計者の負担になります.

図3は部品の配置イメージを考慮した回路図の例です.



(a) RF回路図の例

(b) ダンピング抵抗を,バッファの出力段の そばに置きたい場合の接続図

(c)パスコンの挿入位置を示唆した回路図

図3 回路図の書きかたしだいで基板設計が楽になる

(a)は高周波回路の例.部品の配置,信号の流れをイメージしながら回路図が書かれており,回路図のイメージどおりに基板が設計されている.(b)は,ダンピン グ抵抗(R108~R123)を,バッファの出力段のそばに置きたい場合の接続図の書きかた.コネクタの出口部分に置きたい場合は,コネクタの書かれているページ にR108~R123を移す.回路設計と基板設計の間でルール化しておけば,ダンピング抵抗を適切な場所に入れてもらえる.(c)は,パスコンの挿入位置を示唆し た回路図.この場合,C502はICの13ピンのそばに配置される.パスコンを適切な場所に入れて数を減らすことは,基板設計上いろいろな面で重要になっている.