第8章

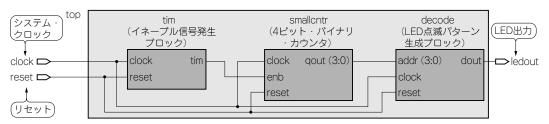
ISE WebPACK 活用チュートリアル

ここでは、米国Xilinx 社のFPGA/PLD 開発ツール[ISE WebPACK 10.1i] の使い方を解説する、XC3S 250E 向けの簡単な回路を設計し、FPGA を動作させる、実際に行う手順を具体的に示すので、同じよ うに操作すれば FPGA 設計を体験できる (本書付属 DVD-ROM から開発ツールをインストールする手順 については、第8章 APPENDIXを参照). (編集部)

ここでは、ISE WebPACK 10.1 を使用して、プロジェクト作成から FPGA ヘダウンロードする手順を説 明します. ISE は Xilinx 社の FPGA/PLD 開発ツールです. もともとは Integrated Software Environment の略称であり、統合設計環境を意味しています。設計入力、論理合成、配置配線、タイミング解析、FPGA への回路データのダウンロードなど、FPGA 開発の一連の作業を行うことができます。

ISE WebPACK 10.1 は、本書付属 DVD-ROM に収録しています。 定期的にバージョンアップされてい ますが、最近は基本的な操作方法はほとんど変わっていないので、今後のバージョンでもある程度対応で きると思います.

FPGA 基板とサンプル回路の準備


サンプル回路は、LED を点滅させる回路とします. 回路の構成を図1に示します.

回路は、top (リスト1)を最上位ブロックとして、三つの機能ブロックで構成しています。

smallcntr ブロック (リスト2) の4ビット・カウンタの値に従って、decode ブロック (リスト3) で生成し たパターンを出力し、LED を点滅させます.

使用する FPGA 基板には,33MHzのクロック発振器が実装されているものとします.このクロックを そのまま使用すると、LED の点滅動作を目で見ることができません。そこでtim ブロック (リスト4) では、 周期の長いイネーブル信号を作っています、smallcntr は、このイネーブル信号が"H"の時のみカウント アップするように動作します.

図1 サンプル回路のブロック図

最上位ブロックとして、三つの機能ブロックで構成されている.

リスト1 最上位ブロック top のVHDL ソース・コード (top.vhd)

```
library ieee;
                                                              end component;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
                                                              component decode
use ieee.std_logic_unsigned.all;
                                                              port (addr: in std_logic_vector
                                                                                            (3 downto 0);
entity top is
                                                                   clock: in std_logic;
     port (clock : in std logic;
                                                                   reset: in std logic;
           reset : in std_logic;
                                                                    dout: out std_logic);
           ledout : out std_logic);
                                                              end component;
end top;
                                                        begin
architecture arc_top of top is
                                                               ul: tim port map(
     signal cntout : std_logic_vector
                                                                         clock => clock,
                                   ( 3 downto 0);
                                                                         reset => reset,
     signal enable : std_logic;
                                                                           tim => enable);
     component tim
                                                               u2: smallcntr port map(
     port(clock : in std_logic;
                                                                         clock => clock,
          reset : in std_logic;
                                                                          reset => reset,
          tim : out std_logic);
                                                                           enb => enable.
     end component;
                                                                          qout => cntout);
     component smallcntr
                                                               u3 : decode port map (
     port (clock : in std_logic;
                                                                         addr => cntout,
           reset : in std_logic;
                                                                         clock => clock,
           enb : in std logic;
                                                                         reset => reset.
           qout : out std_logic_vector
                                                                          dout => ledout);
                                   (3 downto 0));
                                                        end arc top;
```

リスト2 smallcntr ブロックのVHDL ソース・コード (smallcntr.vhd)

```
library ieee;
use ieee.std_logic_1164.all;
                                                              process (clock, reset)
use ieee.std_logic_arith.all;
                                                              begin
use ieee.std_logic_unsigned.all;
                                                                        if reset='0' then
                                                                                 temp <= "0000";
entity smallcntr is
                                                                        elsif clock'event and
     port (clock : in std_logic;
                                                                                            clock='1' then
                                                                            if enb = '1' then
           reset : in std_logic;
           enb : in std logic;
                                                                                 temp <= temp + 1;
            qout : out std_logic_vector
                                                                            else
                                   (3 downto 0));
                                                                                 temp <= temp;
end smallcntr;
                                                                            end if;
                                                                        end if;
architecture arc_cnt of smallcntr is
                                                              end process;
      signal temp : std_logic_vector
                                                              qout <= temp;
                                    (3 downto 0);
                                                         end arc_cnt;
begin
```

