# 非同期シリアル、パラレル、CAN、USB、Ethernetなど

# 周辺機器との通信系インターフェース

外付け周辺機器やパソコンとの通信には、しばしば非同期シリアル・インターフェースが使われます。 プリンタの接続はUSBやLAN経由が主流になりましたが、マイコンで制御するにはパラレル・インター フェースが手軽です、今やポピュラなUSB経由で接続したいこともあるでしょう、本章では、周辺機器 との通信に使うインターフェースについて説明します.

# 9-1 非同期シリアル・インターフェース

# ■ 非同期シリアル伝送とは

## ● 一定時間間隔で直列に送る

これは複数のデータを直列(シリアル)に伝送する方式の一つです。非同期シリアル通信は歴史が長く、 いわばモールス信号を文字コードに置き換えたようなものです。初期には、タイプライタのような機械 (テレプリンタ,テレタイプ)で接点のON/OFFにより文字コードを伝送していました。1970年代に入る と、テレタイプがコンピュータ端末にも応用され、文字コードとしてASCIIコードが採用されて、現在に 至っています.

一方,並列に送る方法は「パラレル伝送」と呼ばれ、たとえば8ビット・データを8本の信号線を使っ て一度に送ります.

初期のテレタイプは電信線に接続して使われました.電信線は2本の線しかないため、一度に8ビッ ト・データを送ることは不可能です。そこで、8ビット・データを1ビットごとに一定時間間隔で順番に (直列に)伝送する「シリアル伝送」が採用されました.

### ● 非同期シリアル伝送の同期方法

シリアル伝送には同期型と非同期型があります。本章で説明する非同期型は「調歩同期」とも呼ばれ、 1ビットの伝送時間を規定し、スタート・ビットとストップ・ビットを使って送受信の同期を図る方式です。

図9-1-1を見てください. 送り手は自由に送信を開始するため, 受け手はいつデータを取り込んだらよ いかがわかりません、そこで送り手は、8ビット・データの先頭にスタート・ビットを付け、最後にスト ップ・ビットを付けた10ビット長のデータを決められた時間間隔で出力します. 受け手は, 常にスター ト・ビットを監視し、スタート・ビットが来たら送信側と同一の速度でデータを取り込みます。

なお、伝送エラーを検出するため、データに上位1ビットを追加して、パリティ・ビットとする場合が あります.アルファベットの伝送には7ビット・データで十分なので,7ビット・データ+パリティが一

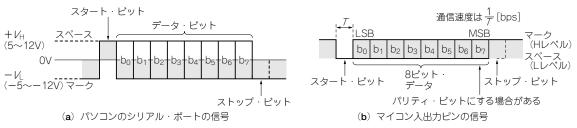



図9-1-1 パソコンのシリアル・ポートの信号

表9-1-1 ASCIIコ ード

|                   | 上位3ビット |     |      |   |   |       |   |     |
|-------------------|--------|-----|------|---|---|-------|---|-----|
| 下位 4 ビット<br>(hex) | 0      | 1   | 2    | 3 | 4 | 5     | 6 | 7   |
| 0                 | NUL    | DLE | スペース | 0 | @ | P     | ` | р   |
| 1                 | SOH    | DC1 | !    | 1 | A | Q     | a | q   |
| 2                 | STX    | DC2 | "    | 2 | В | R     | b | r   |
| 3                 | ETX    | DC3 | #    | 3 | С | S     | С | S   |
| 4                 | EOT    | DC4 | \$   | 4 | D | Т     | d | t   |
| 5                 | ENQ    | NAK | %    | 5 | E | U     | е | u   |
| 6                 | ACK    | SYN | &    | 6 | F | V     | f | v   |
| 7                 | BEL    | ETB | 1    | 7 | G | W     | g | W   |
| 8                 | BS     | CAN | (    | 8 | Н | Х     | h | х   |
| 9                 | HT     | EM  | )    | 9 | I | Y     | i | У   |
| A                 | LF     | SUB | *    | : | J | Z     | j | Z   |
| В                 | VT     | ESC | +    | ; | K | [     | k | {   |
| С                 | FF     | FS  | ,    | < | L | \(\\) | 1 |     |
| D                 | CR     | GS  | -    | = | М | ]     | m | }   |
| Е                 | SO     | RS  |      | > | N | ^     | n | ~   |
| F                 | SI     | US  | /    | ? | 0 | _     | 0 | DEL |

つのスタイルになっています。7ビット・データは、ASCIIコードで表現するならわしです。日本ではカタカナを取り扱う関係から、8ビット・データでバリティなしが主流です。カタカナを含む8ビット・コードは、ASCIIコードを拡張したIISコードとして規格化されています。

#### ■ ASCIIコード

伝送される文字は通常ASCIIコードと呼ばれる文字を数値に対応づけたコード(**表9-1-1**)を使用します。ASCIIコードは英数文字に対応し、カタカナは別途JISコードで規定されています。ASCIIコードで数字は30h台に、アルファベットは41hからそれぞれ割り当てられています。また、 $00\sim1$ Fhは制御コードで、その意味を表9-1-2に示します。

## RS-232-C, EIA-232-F, EIA-574

#### ● 信号割り当てなど

電信は電話へと発展し、非同期シリアル通信を電話回線を通じて行うための装置としてモデムが登場しました。シリアル通信の規格は、モデムと端末(テレタイプ)によるインターフェースを受け継いでいます。 RS-232-Cという規格は1969年に当時のEIA(米国電子工業会)が制定した古いもので、モデムと端末機器



表9-1-2 ASCIIコードの制御文字

| コード<br>(hex) | 記号  | 意味      | 備考        | コード<br>(hex) | 記号  | 意味          | 備考     |
|--------------|-----|---------|-----------|--------------|-----|-------------|--------|
| 00           | NUL | ヌル      | 何もない状態    | 10           | DLE | データ・リンク拡張   |        |
| 01           | SOH | ヘッダの開始  |           | 11           | DC1 | 装置制御1       | XON    |
| 02           | STX | 本文の開始   |           | 12           | DC2 | 装置制御 2      |        |
| 03           | ETX | 本文の終了   |           | 13           | DC3 | 装置制御3       | XOFF   |
| 04           | EOT | 伝送終了    |           | 14           | DC4 | 装置制御 4      |        |
| 05           | ENQ | 問い合わせ   | 電文は届いたか?  | 15           | NAK | 否定応答        | いいえ    |
| 06           | ACK | 肯定応答    | はい        | 16           | SYN | 同期文字        |        |
| 07           | BEL | ベル      |           | 17           | ETB | 伝送ブロックの終了   |        |
| 08           | BS  | 1 文字戻る  |           | 18           | CAN | キャンセル       |        |
| 09           | НТ  | 水平タブ    |           | 19           | EM  | エンド・オブ・メディア |        |
| 0A           | LF  | 行送り     |           | 1A           | SUB | 置換文字        |        |
| 0B           | VT  | 垂直タブ    |           | 1B           | ESC | エスケープ       | 中断, 破棄 |
| 0C           | FF  | 用紙フィード  | 画面消去に使われる | 1C           | FS  | ファイル・セパレータ  |        |
| 0D           | CR  | 改行      | 1行の終わりを表す | 1D           | GS  | グループ・セパレータ  |        |
| 0E           | SO  | シフト・アウト |           | 1E           | RS  | レコード・セパレータ  |        |
| 0F           | SI  | シフト・イン  |           | 1F           | US  | ユニット・セパレータ  |        |

のインターフェースを定めた規格です、その後、少しの変遷を経て現在のANSI/TIA/EIA-232-F(1997年 制定)に受け継がれています、その信号名とピン配置を表9-1-3と図9-1-2(a)に示します、EIA-232-Fは25 ピンDサブ・コネクタを使うものが一般的ですが、それ以外のものも規格化されています。なお、実際の モデム装置では、EIA-232-F規格のすべての信号が使われているわけではありません.

現在のパソコンで主流のシリアル・ポートは、9ピンDサブ・コネクタを使い、用途を非同期シリアル 通信に限定したEIA-574(1990年制定)です.表9-1-4と図9-1-2(b)が信号名とピン配置です.

#### DTE, DCE

パソコン側はDサブ・コネクタのオス・コネクタで出力され、信号割り当てはDTE(Data Terminal Equipment) 定義です、パソコンはホスト・コンピュータから見ると DTE、モデム装置は DCE (Data Circuit Terminating Equipment)と呼ばれます。同じ信号名でも、DTE型とDCE側では入出力方向が逆 であることに気をつけてください.

図9-1-3のようにDTEとDCEを接続するときは1対1のストレート結線されたケーブル、DTEどうしを 接続するときはクロス・ケーブルを使用します。パソコンに接続する機器を製作する場合は、機器を DCE定義としてストレート・ケーブルで接続できるようにするとよいでしょう。

#### 信号レベルの概要

信号は**図9-1-4**のように正負の電圧に変化します。送信端ではデータ "1"を $-5\sim-15V$ 、データ "0" を + 5~15V で出力します.受信端では - 3~ - 15V の信号をデータ"1"と判定し,+3~ + 5V の信号を データ"0"と判定します.同様に制御信号のON/OFF状態も図のように送り出し判定します.なお,歴 史的な経緯からデータ"1"の状態を「マーク」、データ"0"の状態を「スペース」と呼ぶこともあります。

現在のパソコンのシリアル・ポートの信号レベルは、EIA-232を意識したものですが、必ずしも規格通 りではありません、また、現在のパソコンのシリアル・ポートに関する規格EIA-574は、コネクタ形状と ピンの信号割り当てを定めただけで、電気的特性を定めていません、このため現実のシリアル・ポートの 電圧レベルや伝送能力は、パソコンによって少し異なります.

表9-1-3 EIA-232-F(旧RS-232-C)の信号名と25ピンDサブ・コネクタのピン割り当て

| ピン | ピン EIA-232-F |        | RS-232-C |      | 入出力   | 入出力   | E L o 差吐                                                             | -M III                         |
|----|--------------|--------|----------|------|-------|-------|----------------------------------------------------------------------|--------------------------------|
| 番号 | 回路名          | 通称     | 回路名      | 通称   | (DTE) | (DCE) | 信号の意味                                                                | 説明                             |
| 1  | -            | Shield | AA       | PG   | -     | -     | Shield (Protective Ground)                                           | シールド(保安接地)                     |
| 2  | BA           | TXD    | BA       | TXD  | О     | I     | Transmitted Data                                                     | 送信データ                          |
| 3  | BB           | RXD    | BB       | RXD  | I     | 0     | Received Data                                                        | 受信データ                          |
| 4  | CA/CJ        | RTS    | CA       | RTS  | 0/0   | I/I   | Request to Send/Ready for Receiving                                  | 送信リクエスト                        |
| 5  | СВ           | CTS    | СВ       | CTS  | I     | 0     | Clear to Send                                                        | 送信可                            |
| 6  | CC           | DSR    | CC       | DSR  | I     | 0     | DCE Ready (Data Set Ready)                                           | データ通信装置レディ                     |
| 7  | AB           | SG     | AB       | SG   | _     | -     | Signal Common (Signal Ground)                                        | 信号コモン(信号接地)                    |
| 8  | CF           | DCD    | CF       | DCD  | I     | О     | Received Line Signal Detector<br>(Data Carrier Detected)             | キャリア検出                         |
| 9  | 1            | -      | _        | -    | _     | -     | _                                                                    | (試験用に予約)                       |
| 10 | -            | _      | _        | -    | -     | _     | _                                                                    | (試験用に予約)                       |
| 11 | -            | -      | _        | -    | _     | -     | _                                                                    | (未割り当て)                        |
| 12 | SCF/CI       | -      | SCF      | =    | I/I   | 0/0   | Secondary Received Line Signal<br>Detector/Data Signal Rate Selector | 2次チャネルの受信ライン信号検出/データ信号レート・セレクタ |
| 13 | SCB          | -      | SCB      | -    | I     | 0     | Secondary Clear to Send                                              | 2次チャネルの送信可                     |
| 14 | SBA          | -      | SBA      | -    | О     | I     | Secondary Transmitted Data                                           | 2次チャネルの送信データ                   |
| 15 | DB           | TXC2   | DB       | TXC2 | I     | 0     | Transmitter Signal Element Timing-2                                  | 送信信号エレメント・タイミング 2              |
| 16 | SBB          | _      | SBB      | -    | I     | 0     | Secondary Received Data                                              | 2次チャネルの受信データ                   |
| 17 | DD           | RXC    | DD       | RXC  | I     | О     | Receiver Signal Element Timing                                       | 受信信号エレメント・タイミング                |
| 18 | LL           | -      | _        | -    | О     | I     | Local Loopback                                                       | ローカル・ループバック                    |
| 19 | SCA          | _      | SCA      | -    | О     | I     | Secondary Request to Send                                            | 2次チャネルの送信リクエスト                 |
| 20 | CD           | DTR    | CD       | DTR  | О     | I     | DTE Ready (Data Terminal Ready)                                      | データ端末装置レディ                     |
| 21 | RL/CG        | ı      | CG       | ı    | O/I   | I/O   | Remote Loopback/Signal Quality<br>Detector                           | リモート・ループバック / 信号品<br>質検出       |
| 22 | CE/CK        | RI     | CE       | RI   | I/I   | 0/0   | Ring Indicator/Received Energy<br>Present                            | 被呼表示 / 受信エネルギ存在                |
| 23 | CH/CI        | -      | CH/CI    | -    | O/I   | I/O   | Data Signal Rate Selector                                            | データ信号レート・セレクタ                  |
| 24 | DA           | TXC1   | DA       | TXC1 | О     | I     | Transmitter Signal Element Timing-1                                  | 送信信号エレメント・タイミング 1              |
| 25 | TM           | -      | -        | -    | I     | О     | Test Mode                                                            | テスト・モード                        |

注▶ DTE: Data Terminal Equipment(パソコンなど), DCE: Data Communication Equipment(モデムなど)

表9-1-4 EIA-574の信号名とピン割り当て

| ピン番号 | 信号名<br>(2文字の通称) | 信号名<br>(3 文字の通称) | 入出力<br>(DTE) | 入出力<br>(DCE) | 信号の意味                                 | 説明         |
|------|-----------------|------------------|--------------|--------------|---------------------------------------|------------|
| 1    | CD              | DCD              | I            | О            | Carrier Detect(Data Carrier Detected) | キャリア検出     |
| 2    | RD              | RXD              | I            | 0            | Received Data                         | 受信データ      |
| 3    | TD              | TXD              | 0            | I            | Transmitted Data                      | 送信データ      |
| 4    | ER              | DTR              | 0            | I            | DTE Ready (Data Terminal Ready)       | データ端末装置レディ |
| 5    | SG              | GND              | -            | -            | Signal Common (Ground)                | 信号コモン      |
| 6    | DR              | DSR              | I            | 0            | DCE Ready (Data Set Ready)            | データ通信装置レディ |
| 7    | RS              | RTS              | 0            | I            | Request to Send                       | 送信リクエスト    |
| 8    | CS              | CTS              | I            | О            | Clear to Send                         | 送信可        |
| 9    | RI              | RI               | I            | O            | Ring Indicator                        | 被呼表示       |

注▶ DTE: Data Terminal Equipment(パソコンなど), DCE: Data Communication Equipment(モデムなど)

マイコンからの出力は0~+3Vまたは0~+5V程度ですから,正負にスイングするパソコン用シリア ル・ポートの信号を作るには、なんらかのインターフェースが必要になります.

