
 APPLICATION NOTE

R01AN1685EU0260 Rev.2.60 Page 1 of 60

July 7, 2014

RX Family

Board Support Package Module Using Firmware Integration Technology

Introduction

The foundation of any project that uses FIT modules is the Renesas Board Support Package (r_bsp). The r_bsp is easily

configurable and provides all the code needed to get the MCU from reset to main(). The document covers conventions

of the r_bsp so that users will know how to use it, configure it, and create a BSP for their own board.

Target Device

The following is a list of devices that are currently supported:

 RX110, RX111 Groups

 RX210, RX21A Groups

 RX220 Group

 RX610 Group

 RX621, RX62N, RX62T, RX62G Groups

 RX630, RX631, RX63N, RX63T Groups

 RX64M Group (Note that building the RX64M BSP requires RXC compiler version 2.01.00 or higher

and E2 Studio version 3.0.0 or higher.)

When using this application note with other Renesas MCUs, careful evaluation is recommended after making

modifications to comply with the alternate MCU.

Related Documents

 Firmware Integration Technology User’s Manual (R01AN1833EU0100)

Contents

1. Overview ... 2

2. Features .. 4

3. Configuration ... 9

4. API Information.. 16

5. API Functions .. 22

6. Project Setup ... 41

Website and Support ... 60

R01AN1685EU0260
Rev.2.60

July 7, 2014

RX Family Board Support Package Module Using FIT

R01AN1685EU0260 Rev.2.60 Page 2 of 60

July 7, 2014

1. Overview

Before running the user application there are a series of operations that must be performed to get the MCU set up

properly. These operations, and the number of operations, will vary depending on the MCU being used. Common

examples include: setting up stack(s), initializing memory, configuring system clocks, and setting up port pins. No

matter the application, these steps need to be followed. To make this process easier the Renesas Board Support Package,

abbreviated as r_bsp, is provided.

At the lowest level the r_bsp provides everything needed to get the user’s MCU from reset to the start of their

application’s main() function. The r_bsp also provides common functionality that is needed by many applications.

Examples of this include callbacks for exceptions and functions to enable or disable interrupts.

While every application will need to address the same steps after reset, this does not mean that the settings will be the

same. Depending on the application, stack sizes will vary and which clock is used will change. All r_bsp configuration

options are contained in one header file for easy access.

Many customers start development on a Renesas development board and then transition to their own custom boards.

When users move to their own custom hardware it is highly recommended they create a new BSP inside of the r_bsp.

By following the same standards and rules that are used for the provided BSPs the user can get an early start on

development knowing that their application code will move to their target board very easily. Details on how users can

create their own BSPs are provided in this document.

1.1 Terminology

Term Meaning

Platform The user’s development board. Used interchangeably with ‘board’.

BSP Short for Board Support Package. BSP’s usually have source files related to a specific

board.

Callback Function This term refers to a function that is called when an event occurs. For example, the bus

error interrupt handler is implemented in the r_bsp. The user will likely want to know

when a bus error occurs. To alert the user, a callback function can be supplied to the

r_bsp. When a bus error occurs the r_bsp will jump to the provided callback function

and the user can handle the error. Interrupt callback functions should be kept short and

be handled carefully because when they are called the MCU will still be inside of an

interrupt and therefore will be delaying any pending interrupts.

RX Family Board Support Package Module Using FIT

R01AN1685EU0260 Rev.2.60 Page 3 of 60

July 7, 2014

1.2 File Structure

The r_bsp file structure is shown below in Figure 1-1. Underneath the root r_bsp folder there are 3 folders and 2 files.

The first folder is named doc and contains r_bsp documentation. The second folder is the board folder which has one

folder per supported board. In each board folder the user will find source files that are specific to that board. There is

also a folder named user that is provided. This folder is merely a placeholder to remind users that it is recommended for

them to create their own board folder. The third folder is the mcu folder which has one folder per supported MCU.

There is also a folder named all in this directory containing source that is common to all MCUs in the r_bsp. While

board folders have source files specific to a board, mcu folders contain source that is shared between MCUs in the same

MCU Group. This means that if the user has two distinct boards that both use a version of the RX63N then each board

will have its own board folder (i.e. board >> my_board_1 & board >> my_board_2) but both will share the same mcu

folder (i.e. mcu >> rx63n). Even if the two RX63N MCUs have different packages or memory sizes they will still share

the same mcu folder.

The file platform.h is provided for the user to choose their current development platform. platform.h, in turn, selects all

the proper header files from the board and mcu folders to be included in the user’s project. This is discussed in more

detail in later sections. The readme.txt file is a standard text file that is provided with all FIT Modules that provides

brief information about the r_bsp.

Figure 1-1 : r_bsp File Structure

RX Family Board Support Package Module Using FIT

R01AN1685EU0260 Rev.2.60 Page 4 of 60

July 7, 2014

2. Features

This section will go into more detail on the features provided by the r_bsp.

2.1 MCU Information

One of the main benefits of the r_bsp is that the user defines their global system settings only once, in a single place in

the project. This information is defined in the r_bsp and then used by FIT Modules and user code. FIT Modules can use

this information to automatically configure their code for the user’s system configuration. If the r_bsp did not provide

this information then the user would have to specify system information to each FIT Module separately.

Configuring the r_bsp is discussed in Section 3. The r_bsp uses this configuration information to set macro definitions

in mcu_info.h. Each MCU may have different macros in mcu_info.h, but below are some common examples.

Define Meaning

BSP_MCU_SERIES_<MCU_SERIES>

Which MCU Series this MCU belongs too. Example:

BSP_MCU_SERIES_RX600 would be defined if the MCU was an

RX62N, RX62T, RX630, RX63N, etc.

BSP_MCU_<MCU_GROUP>
Which MCU Group this MCU belongs too. Example:

BSP_MCU_RX111 would be defined if the MCU was an RX111.

BSP_PACKAGE_<PACKAGE_TYPE>
The package of the MCU. Example: BSP_PACKAGE_LQFP100

would be defined for a 100-pin LQFP package MCU.

BSP_PACKAGE_PINS How many pins this MCU has.

BSP_ROM_SIZE_BYTES The size of the user application ROM space in bytes.

BSP_RAM_SIZE_BYTES The size of the RAM available to the user in bytes.

BSP_DATA_FLASH_SIZE_BYTES The size of the data flash area in bytes.

BSP_<CLOCK>_HZ

There will be one of these macros for each clock on the MCU.

Each macro will define that clock’s frequency in Hertz. Examples:

BSP_LOCO_HZ defines the LOCO frequency in Hz.

BSP_ICLK_HZ defines the CPU clock in Hz.

BSP_PCLKB_HZ defines the Peripheral Clock B in Hz.

BSP_MCU_IPL_MAX The maximum interrupt priority level for the MCU.

BSP_MCU_IPL_MIN The minimum interrupt priority level for the MCU.

FIT_NO_FUNC

and

FIT_NO_PTR

These macros can be used as arguments in function calls to specify

that the nothing is being supplied for an argument. For example, if

a function takes an optional argument for a callback function then

FIT_NO_FUNC could be used if the user did not wish to supply a

callback function. These macros are defined to point to reserved

address space. This is done so that if the argument is used

improperly it is easier to catch. The reason for this is that if the

MCU attempts to access reserved space then a bus error will occur

and the user will know immediately. If NULL was used instead

then a bus error would not occur because NULL is typically

defined as 0 which is a valid RAM location on the RX.

RX Family Board Support Package Module Using FIT

R01AN1685EU0260 Rev.2.60 Page 5 of 60

July 7, 2014

2.2 Initialization

The PowerON_Reset_PC() function in resetprg.c is set as the reset vector for the MCU. This function performs a

number of chip initialization actions to get the MCU ready to jump to the user’s application. The flowchart below

details the operations this function performs.

Figure 2-1: PowerON_Reset_PC() Flowchart

RX Family Board Support Package Module Using FIT

R01AN1685EU0260 Rev.2.60 Page 6 of 60

July 7, 2014

2.3 Global Interrupts

Interrupts on RX MCUs are disabled out of reset. The PowerON_Reset_PC() function will enable interrupts before the

user’s application is called (see Section 2.2).

RX devices have two vector tables: a relocatable vector table and a fixed vector table. As the names suggest the

relocatable vector table can be anywhere in memory and the fixed vector table is at a static location at the top of the

memory map.

The relocatable vector table holds peripheral interrupt vectors and is pointed to by the INTB register. This register is

initialized after reset in the PowerON_Reset_PC() function. The vectors in the relocatable vector table are inserted by

the RX toolchain. The RX toolchain knows about the user’s interrupt vectors by the use of the ‘#pragma interrupt’

directives in the user’s code.

The fixed vector table holds exception vectors, the reset vector, as well as some flash-based option registers. The fixed

vector table is defined in vecttbl.c along with default interrupt handlers for all exceptions, the NMI interrupt, bus errors,

and undefined interrupts. The user has the option of dynamically setting callbacks (see Section 2.4) for all of these

vectors using the functionality found in mcu_interrupts.c. The vecttbl.c file also takes care of setting up the User Boot

reset vector when applicable.

All vectors in the fixed vector table are handled in vecttbl.c. All vectors in the relocatable vector table are not handled

because the user will define these vectors and each application will be different. This means that in every application

there will be unfilled vectors that should be taken care of in case that interrupt is triggered by accident. Many linkers

support the filling of unused vectors with a static function. The undefined_interrupt_source_isr() function in vecttbl.c is

provided for this purpose and the user is encouraged to setup the linker to fill in unused vectors with this function’s

address.

2.4 Interrupt Callbacks

The r_bsp provides several API functions (see Section 5.13 through 5.15) which allow the user to be alerted when

certain interrupts are triggered. This works by the user selecting the interrupt and then providing a callback function.

When the interrupt is triggered the r_bsp will call the supplied callback function.

Currently, the user can choose to register callbacks for all exception interrupts in the fixed vector table, the bus error

interrupt, and the undefined interrupt. After the user callback function has been executed, the r_bsp interrupt handler

will clear any interrupt flags as needed.

2.5 Non-Existent Port Pins

Within a MCU Group there can be many different packages with varying number of pins. For packages that have less

pins than the maximum (e.g. 64 pin package in a MCU group that goes up to 144 pins), the non-bonded out pins can be

initialized to lower power consumption. Based on the settings in r_bsp_config.h the r_bsp will automatically initialize

these non-bonded out pins during the MCU initialization procedure. This feature is implemented in the mcu_init.c

function and is called by the hardware_setup() function.

2.6 Clock Setup

All system clocks are setup during r_bsp initialization. The clocks are configured based upon the user’s settings in the

r_bsp_config.h file (see Section 3.2.6). Clock configuration is performed prior to initializing the C runtime environment.

This is done to quicken this process since some RX MCUs startup on a relatively slow clock (i.e. RX63x starts on

125kHz Low-Speed On-Chip Oscillator). When selecting a clock the code in the r_bsp will implement the required

delays to allow the selected clock to stabilize.

2.7 STDIO & Debug Console

When enabled (see Section 3.2.3), the STDIO library is initialized as part of the MCU initialization procedure. The

r_bsp code is setup to send STDIO output to the debug console that can be viewed in HEW or e2studio. The source file

lowlvl.c is responsible for sending and receiving bytes for STDIO functions and as previously stated is setup by default

to use the debug console.

RX Family Board Support Package Module Using FIT

R01AN1685EU0260 Rev.2.60 Page 7 of 60

July 7, 2014

2.8 Stacks & Heap

RX MCUs have two stacks that can be used: the User stack and the Interrupt stack. When both stacks are used the User

stack will be used during normal execution flow and the Interrupt stack will be used during interrupt handling. Having 2

stacks can make it easier to figure out how much stack space to allocate since the user does not have to worry about

always having enough room on the User stack for if-and-when an interrupt occurs. Some users will not want 2 stacks

though because it is not needed in all applications and can lead to wasted RAM (i.e. space in between stacks that is not

used). If only 1 stack is used then it will always be the Interrupt stack.

The User and Interrupt stacks and the heap are all setup and initialized after reset inside of the r_bsp code. The sizes of

the stacks and heap, and whether 1 or 2 stacks are used, is configured in r_bsp_config.h (see Section 3.2.2). The user

also has the option of disabling the heap if desired.

2.9 CPU Mode

Out of reset, RX MCUs operate in Supervisor CPU Mode. In Supervisor Mode all CPU resources and instructions are

available. The user has the option (see Section 3.2.4) of transitioning to User Mode before the r_bsp code jumps to

main(). In User Mode there are restrictions to any instruction capable of writing to:

 Some bits (bits IPL[3:0], PM, U, and I) in the processor status word (PSW)

 Interrupt stack pointer (ISP)

 Interrupt table register (INTB)

 Backup PSW (BPSW)

 Backup PC (BPC)

 Fast interrupt vector register (FINTV)

If the MCU executes one of these instructions while in User Mode, an exception will trigger. If the user has a callback

setup (see Section 2.4) then they will be alerted by a callback function of the exception.

2.10 ID Code

RX MCUs have a 16-byte ID Code in ROM that protects the MCU’s memory from being read through a debugger, or

in serial boot mode, in an attempt to extract the firmware from the device. The ID Code resides in the fixed vector table

and can easily be set in r_bsp_config.h (see Section 3.2.7). For more information on available ID Code options please

reference the ID Code subsection in the ‘Flash Memory’ or ‘ROM’ section of your MCU’s hardware manual.

2.11 Parallel Programmer Protection

Similar to the ID Code, RX MCUs also have a 4-byte code in ROM that can protect access to the MCU’s memory from

parallel programmers. The user has the option of allowing reads and write, only allowing writes, and prohibiting all

access. See Section 3.2.7 for information on how to enable this feature.

2.12 Endian

RX MCUs have the option of operating in big or little endian mode. Which mode is chosen is decided in different ways

depending on which MCU is being used. RX610 and RX62x MCUs have a pin where the level decides. RX100, RX200,

and RX63x MCUs have a register in ROM that decides the endian that will be used. For devices with the register in

ROM, the r_bsp detects the endian selected in the toolchain and will use that to appropriately set the register. The r_bsp

currently detects endian from the following toolchains:

 Renesas RXC

 IAR

 KPIT GNU

The RX64M uses a register (MDE) in the configuration setting area. The bsp for the 64M requires that a section named

“OPT_MEMORY” be created in the linker sections to allow access to this register.

Note that for RX devices with a User Boot area and a ROM register to set its endian the same practice as above applies.

2.13 Option Function Select Registers

Starting with RX63x, RX200, and RX100 MCUs, there are registers stored in ROM called Option Function Select

registers. These registers are used to enable certain MCU features at reset instead of having to enable them in the user’s

RX Family Board Support Package Module Using FIT

R01AN1685EU0260 Rev.2.60 Page 8 of 60

July 7, 2014

code. Examples include the ability to enable low voltage monitoring, start the HOCO oscillating, and to configure and

start the IWDT. The user can input the values to be used for these registers in r_bsp_config.h (see Section 3.2.7).

The RX64M uses Option Function Select (OFS) registers defined in the configuration setting area. The bsp for the 64M

requires that a section named “OPT_MEMORY” be created in the linker sections to allow access to these registers.

2.14 Board-Specific Defines

Each board folder has a board-specific header file which defines things such as which pins are used for LEDs, switches,

and SPI slave selects. The name of the file is the name of the board with ‘.h’ appended. For example, the file for the

RSKRX111 is named rskrx111.h.

2.15 System Wide Parameter Checking

By default FIT modules will check input parameters to be valid. This is helpful during development but some users

will want to disable this for production code. The reason for this would be to save execution time and code space. In

r_bsp_config.h there is an option to globally enable or disable parameter checking. Local modules will use this value by

default but can select to override the value locally if desired. To configure this option see Section 3.2.9.

2.16 Atomic Locking

The r_bsp provides API functions to implement atomic locking. These locks can be used to protect critical areas of code

as a RTOS semaphore or mutex normally would. Care should be taken when using these locks though since they do not

offer the advanced features one would expect from a modern RTOS. If used incorrectly then the locks could cause a

deadlock in the user’s system.

In each mcu folder the user will find a file named mcu_locks.h. This contains an enum named mcu_lock_t which has

one lock per peripheral, and peripheral channel, on the MCU. These locks can be used to mark that a peripheral has

been reserved. This could be used if the user wanted to use a FIT module to control three channels of a peripheral and

their own custom code for one channel. By reserving the lock for the channel they need they have removed that channel

from being used by the FIT Module. These locks can also be used if the user has more than one FIT module for the

same peripheral. For example, if the user had one FIT module for using the SCI in asynchronous mode and another for

using the SCI in I2C mode then these locks will prevent these two modules from trying to use the same SCI channel.

There are 4 locking API functions provided that are detailed in Section 5. The only difference between the hardware

and software locking functions is that the hardware locking functions only use locks that are defined in mcu_locks.h.

The software locking function takes locks allocated anywhere so the user could create their own as needed. FIT

Modules that need locking and do not use a MCU peripheral will also create their own locks and use the software

locking routines.

The user has the option of substituting the default r_bsp locking mechanisms for their own. See Section 3.2.8 for more

information.

2.17 Register Protection

RX100, RX200, and RX63x MCUs have protect registers that protect various MCU registers from being written.

Examples of registers that are protected include clock registers, low power consumption registers, the software reset

register, and low voltage detection registers. The r_bsp provides API functions for easily manipulating these registers to

enable or disable write access. Refer to Sections 5.7 and 5.8 for more information.

2.18 CPU Functions

API functions are provided for CPU functions such as enabling and disabling interrupts and setting the CPU’s interrupt

priority level. Refer to Section 5 for more information.

RX Family Board Support Package Module Using FIT

R01AN1685EU0260 Rev.2.60 Page 9 of 60

July 7, 2014

3. Configuration

The r_bsp provides two header files that are used for configuration. One header file is used for choosing which platform

will be used. The other header file is used to configure the chosen platform.

3.1 Choosing a Platform

The r_bsp provides board support packages for many boards. Choosing which one is currently being used is done by

modifying the platform.h header file found in the root of the r_bsp folder.

To choose a platform uncomment the #include for the board you are using. For example, to develop with a

RSK+RX63N board, uncomment the #include for ‘./board/rskrx63n/r_bsp.h’ macro and make sure all other board

#includes are commented out.

3.2 Platform Configuration

Once a platform has been chosen, it will need to be configured. The user configures their platform using a file named

r_bsp_config.h. Each platform has its own specific configuration file. This file is located in the platform’s board folder

and is named r_bsp_config_reference.h. To create an r_bsp_config.h file the user simply needs to copy the

r_bsp_config_reference.h file from their board folder, rename it to r_bsp_config.h, and put it somewhere in their

project where it can be included. The reference configuration file is provided so that users always have a known-good

configuration file if needed. It is recommended that the r_bsp_config.h file is stored in a folder named r_config in the

user’s project. This is not a requirement but all FIT Modules have configuration files and having one designated

location for these files makes them easy to find and easy to backup.

While each r_bsp_config.h file is different, there are many of the same options in each. The following sections will

provide details on these configuration options. Note that each macro starts with the common prefix ‘BSP_CFG_’ which

makes them easy to search for and easy for the user to identify.

RX Family Board Support Package Module Using FIT

R01AN1685EU0260 Rev.2.60 Page 10 of 60

July 7, 2014

3.2.1 MCU Product Part Number Information

The product part number for a MCU can provide the r_bsp with a lot of information about a MCU. For this reason, the

beginning of the configuration file has definitions that are set based on the MCU’s product part number. All of these

macros have a prefix of ‘BSP_CFG_MCU_PART_’. Some MCUs have more information in their product part numbers

than others but the table below shows the standard set that most have.

Define Value Meaning

BSP_CFG_MCU_PART_PACKAGE
See comments above #define in

r_bsp_config.h.

Defines which package is being

used. Depending on package sizes

MCUs will have different

numbers of pins and may have

more or less peripherals.

BSP_CFG_MCU_PART_MEMORY_SIZE
See comments above #define in

r_bsp_config.h.

Defines the sizes of ROM, RAM,

and Data Flash.

BSP_CFG_MCU_PART_GROUP
See comments above #define in

r_bsp_config.h.

Defines the MCU Group (e.g.

RX62N, RX63T) in a MCU

series.

BSP_CFG_MCU_PART_SERIES
See comments above #define in

r_bsp_config.h.

Defines the MCU Series (e.g.

RX600, RX200, RX100).

Table 3-1 : Product Part Number Defines

3.2.2 Stack & Heap Sizes

Stack sizes for RX devices are defined using the #pragma directives for the RX toolchain.

Define Value Meaning

BSP_CFG_USER_STACK_ENABLE
0 = Use only Interrupt stack.

1 = Use Interrupt & User stacks.

Whether to use 1 stack (Interrupt

stack) or 2 (Interrupt & User

stack). For further explanation

please see Section 2.8.

#pragma stacksize su= Size of User Stack in bytes.

Defines the size of the User stack.

This macro may be hidden from

view if the user has code folding

enabled in their editor.

#pragma stacksize si= Size of Interrupt Stack in bytes.

Defines the size of the Interrupt

stack. This macro may be hidden

from view if the user has code

folding enabled in their editor.

BSP_CFG_HEAP_BYTES Size of heap in bytes.

Defines the size of the heap. To

disable heap please read the

comments above this #define.

Table 3-2 : Stack & Heap Defines

RX Family Board Support Package Module Using FIT

R01AN1685EU0260 Rev.2.60 Page 11 of 60

July 7, 2014

3.2.3 STDIO Enable

The use of the STDIO library requires extra code space, RAM space, and use of the heap. If the user does not require

the use of STDIO then it is recommended to disable it and save the extra memory.

Define Value Meaning

BSP_CFG_IO_LIB_ENABLE
0 = Disable use of STDIO

1 = Enable use of STDIO

Determines whether STDIO

initialization functions are called

at startup to setup the STDIO

libraries.

Table 3-3 : Stack & Heap Defines

3.2.4 CPU Modes & Boot Modes

RX MCUs have multiple boot modes including Serial Boot Mode, User Boot Mode, and Single-Chip Mode. RX610

and RX62x MCUs select which boot mode to use based on certain pin levels at startup. Later MCUs (e.g. RX63x,

RX200, RX100) require a pin to be set as well as setting a value in ROM.

Define Value Meaning

BSP_CFG_RUN_IN_USER_MODE
0 = Stay in Supervisor Mode

1 = Transition to User Mode

Out of reset RX MCUs operate in

Supervisor Mode. The user has the

option of transitioning to User

Mode (which has limited write

access to certain registers). Unless

needed it is recommended to keep

the MCU in Supervisor mode.

BSP_CFG_USER_BOOT_ENABLE
0 = Disable User Boot Mode

1 = Enable User Boot Mode

In order for RX63x, RX200, and

RX100 MCUs to enter User Boot

Mode a value in ROM must be set.

If this macro defines User Boot

Mode to be enabled then the r_bsp

will set the appropriate ROM

value.

Table 3-4 : CPU Modes & Boot Modes Defines

3.2.5 RTOS

Define Value Meaning

BSP_CFG_RTOS_USED
0 = RTOS is not being used

1 = RTOS is being used

Defines if a RTOS is being used in the

current application. Some FIT modules may

use this information for their own

configuration.

Table 3-5 RTOS Defines

RX Family Board Support Package Module Using FIT

R01AN1685EU0260 Rev.2.60 Page 12 of 60

July 7, 2014

3.2.6 Clock Setup

Available clocks vary amongst RX MCUs but the same basic concepts apply to all. After reset the r_bsp will initialize

the MCU clocks using the clock configuration macros found in r_bsp_config.h.

Define Value Meaning

BSP_CFG_CLOCK_SOURCE

0 = Low Speed On-Chip

Oscillator (LOCO)

1 = High Speed On-Chip

Oscillator (HOCO)

2 = Main Clock Oscillator

3 = Sub-Clock Oscillator

4 = PLL Circuit

Defines which clock source will be in

use when the r_bsp code jumps to

main().

BSP_CFG_XTAL_HZ Input clock frequency in Hz.

Defines the input clock frequency. This

is used for calculating final clock

speeds.

BSP_CFG_PLL_DIV PLL Input Frequency Divider

Defines the PLL divider to be used. If

the PLL is not used then this can be

ignored.

BSP_CFG_PLL_MUL
PLL Frequency Multiplication

Factor

Defines the PLL multiplier to be used.

If the PLL is not used then this can be

ignored.

BSP_CFG_<ClockAcronym>_DIV

Examples:

BSP_CFG_ICK_DIV

BSP_CFG_PCKA_DIV

BSP_CFG_PCKB_DIV

BSP_CFG_FCK_DIV

The divisor to use for this

clock.

RX MCUs have a number of clock

domains on-chip. Dividers can be set

for each of these independently to

maximize performance while

minimizing power consumption.

<ClockAcronym> is a placeholder for

the name of the clock to be set. For

example to set the divider for the CPU

clock (ICLK) then the user would set

the BSP_CFG_ICK_DIV macro.

BSP_CFG_BCLK_OUTPUT

0 = BCLK is not output

1 = BCK frequency is output

2 = BCK/2 frequency is output

Defines if BCLK is output and if so

what frequency is output.

BSP_CFG_SDCLK_OUTPUT
0 = SDCLK is not output

1 = BCK frequency is output
Defines if SDCLK is output.

RX Family Board Support Package Module Using FIT

R01AN1685EU0260 Rev.2.60 Page 13 of 60

July 7, 2014

BSP_CFG_USE_CGC_MODULE

0 = Use built-in clock code

1 = Use r_cgc_rx module for

clock management.

Some RX Groups have the option of

enabling use of the r_cgc_rx module.

When this is enabled, the built-in clock

setup code will be removed and

replaced with calls to the r_cgc_rx

module. The r_cgc_rx module is more

sophisticated and offers many more

features than the built-in clock code,

including the ability to change clock

settings at run-time. If your application

does not require dynamic clock changes

then setting this to 0 will result in

smaller code size.

Table 3-6 : Clock Setup Defines

3.2.7 Registers in ROM & External Memory Access Protection

Some registers are located in ROM and therefore must be set at compile-time. These include some option-setting

memory registers as well as certain memory protection registers.

RX MCUs have 2 different mechanisms for protecting MCU memory from being read after production. The first is the

use of ID codes. The RX ID code is 16 byte value that can be used to protect the MCU from being connected to a

debugger or from connecting in Serial Boot Mode. There are different settings that can be set for the ID code; please

refer to the hardware manual for your device for available options. The second mechanism is a 4 byte value called

ROM Code Protection. This value determines what read and write access parallel programmers have to the MCU.

Option-Setting Memory registers (i.e. OFS0, OFS1) can be set so that certain operations occur at reset. For example, the

IWDT can be configured and enabled, voltage detection can be enabled, and HOCO oscillation can be enabled. When

these registers are set the operations are completed before the MCU’s reset vector is fetched and execution begins.

Define Value Meaning

BSP_CFG_ID_CODE_LONG_1

BSP_CFG_ID_CODE_LONG_2

BSP_CFG_ID_CODE_LONG_3

BSP_CFG_ID_CODE_LONG_4

ID code setting in 4 byte

units.

Defines the ID code of the MCU.

The default value all 0xFF’s

means that protection is disabled.

NOTE: if the ID code is set then

it should be remembered because

the code will be required if the

MCU is going to be connected for

debugging or in Serial Boot Mode

again.

BSP_CFG_ROM_CODE_PROTECT_VALUE

0 = Read/Write access is

disabled

1 = Read access is

disabled

Else = Read/Write access is

enabled

Defines the read and write access

allowed by parallel programmers.

BSP_CFG_OFS0_REG_VALUE
Value to be written to OFS0

register.

Defines the 4-byte value to be

programmed into the OFS0 ROM

location.

BSP_CFG_OFS1_REG_VALUE
Value to be written to OFS1

register.

Defines the 4-byte value to be

programmed into the OFS1 ROM

location.

Table 3-7 : ROM Register Defines

RX Family Board Support Package Module Using FIT

R01AN1685EU0260 Rev.2.60 Page 14 of 60

July 7, 2014

3.2.8 Atomic Locking

For an introduction into the r_bsp’s atomic locking see 2.16. These macros allow the user to override the default

locking mechanisms and implement their own. A user might wish to do this in order to replace the simple default

mechanisms provided in the r_bsp with more feature rich objects such as semaphores or mutexes from their RTOS. If

the user wished to do this they would first configure the r_bsp to use user defined locking mechanisms (see

BSP_CFG_USER_LOCKING_ENABLED below). After that they would define BSP_CFG_USER_LOCKING_TYPE

to be the type they wished to use for their locks. If using an RTOS semaphore then its type would be used here. Finally

the user would need to define the four locking functions that would be used (see last 4 entries in table below). The

arguments to these user defined functions have to match the arguments sent to the default locking functions. After these

changes are made all locks in the user’s project would be converted to the user defined locks. Whenever the r_bsp lock

functions are called by user code, or FIT Module code, the user’s functions would be called. At this point the user is

responsible for implementing the locking features. Inside these functions the user would be free to use the more

advanced locking features of their RTOS.

Define Value Meaning

BSP_CFG_USER_LOCKING_ENABLED

0 = Use default locking

mechanisms

1 = Use user defined

locking mechanisms

The default locking mechanisms

provided with the r_bsp do not use an

RTOS and therefore do not offer

some of the advanced features that a

user might expect from an RTOS

when using a semaphore or mutex.

BSP_CFG_USER_LOCKING_TYPE

Data type to be used for

locks (default is

bsp_lock_t)

If the user decides to use their own

locking mechanism then the data type

for their locks should be defined here.

For example, if the user replaces the

default locks with an RTOS

semaphore or mutex then that data

type would be specified here.

BSP_CFG_USER_LOCKING_HW

_LOCK_FUNCTION

User defined functions to

be called when r_bsp

lock functions are

overridden by user.

If the user is using their own locking

mechanisms then the function

defined by this macro will be called

when R_BSP_HardwareLock() is

called.

BSP_CFG_USER_LOCKING_HW

_UNLOCK_FUNCTION

User defined functions to

be called when r_bsp

lock functions are

overridden by user.

If the user is using their own locking

mechanisms then the function

defined by this macro will be called

when R_BSP_HardwareUnlock() is

called.

BSP_CFG_USER_LOCKING_SW

_LOCK_FUNCTION

User defined functions to

be called when r_bsp

lock functions are

overridden by user.

If the user is using their own locking

mechanisms then the function

defined by this macro will be called

when R_BSP_SoftwareLock() is

called.

BSP_CFG_USER_LOCKING_SW

_UNLOCK_FUNCTION

User defined functions to

be called when r_bsp

lock functions are

overridden by user.

If the user is using their own locking

mechanisms then the function

defined by this macro will be called

when R_BSP_SoftwareUnlock() is

called.

Table 3-8 : Atomic Locking Defines

RX Family Board Support Package Module Using FIT

R01AN1685EU0260 Rev.2.60 Page 15 of 60

July 7, 2014

3.2.9 Parameter Checking

This macro is a global setting for enabling or disabling parameter checking. Each FIT module will also have its own

local macro for this same purpose. By default the local macros will take the global value from here though they can be

overridden. Therefore, the local setting has priority over this global setting. Disabling parameter checking should only

performed when inputs are known to be good and the increase in speed or decrease in code space is needed.

Define Value Meaning

BSP_CFG_PARAM_CHECKING_ENABLE
0 = Parameter checking disabled

1 = Parameter checking enabled

Defines whether the global

setting for parameter checking is

enabled or disabled. Local

modules will take this value by

default but can be locally

overridden.

Table 3-9 : Parameter Checking Defines

3.2.10 MCU Voltage

Define Value Meaning

BSP_CFG_MCU_VCC_MV
Voltage supplied to MCU (Vcc)

in millivolts.

Some FIT Modules (e.g. LVD) need to

know the voltage supplied to the MCU.

This information is obtained from here.

Table 3-10 : MCU Voltage Defines

RX Family Board Support Package Module Using FIT

R01AN1685EU0260 Rev.2.60 Page 16 of 60

July 7, 2014

4. API Information

This Driver API follows the Renesas API naming standards.

4.1 Hardware Requirements

Not Applicable.

4.2 Hardware Resource Requirements

Not Applicable.

4.3 Software Requirements

None.

4.4 Limitations

None.

4.5 Supported Toolchains

This driver is tested and working with the following toolchains:

 Renesas RX Toolchain v2.01.00

4.6 Header Files

All API calls are accessed by including a single file platform.h which is supplied with this driver’s project code.

4.7 Integer Types

This project uses ANSI C99 “Exact width integer types” in order to make the code clearer and more portable. These

types are defined in stdint.h.

4.8 Configuration Overview

For configuration information please see Section 3.

4.9 API Data Structures

4.9.1 Software Lock

This data structure is used for implementing atomic locking on RX MCUs. The lock member must be 4-bytes in order

to use the RX’s atomic XCHG instruction. This structure is the default type defined by the

BSP_CFG_USER_LOCKING_TYPE macro.

typedef struct

{

 /* The actual lock. int32_t is used because this is what the xchg()

 instruction takes as parameters. */

 int32_t lock;

} bsp_lock_t;

4.9.2 Interrupt Callback Parameter

This data structure is used when calling an interrupt callback function. The interrupt handler will fill in this structure,

cast it as ‘(void *)’, and then send it as the argument to the callback function.

typedef struct

{

 bsp_int_src_t vector; //Which vector caused this interrupt

} bsp_int_cb_args_t;

RX Family Board Support Package Module Using FIT

R01AN1685EU0260 Rev.2.60 Page 17 of 60

July 7, 2014

4.10 API Typedefs

4.10.1 Register Protection

This typedef defines the different register protection options that can be toggled. Notice that some registers are grouped

together. For example, LPC, CGC, and software reset registers are all protected by the same bit. Which items, and how

many, are in this typedef will vary depending on the MCU being used. Please reference cpu.h for your MCU to see the

valid options for your MCU. The typedef below belongs to the RX111.

/* The different types of registers that can be protected. */

typedef enum

{

 /* Enables writing to the registers related to the clock generation circuit:

 SCKCR, SCKCR3, PLLCR, PLLCR2, MOSCCR, SOSCCR,LOCOCR, ILOCOCR, HOCOCR,

 OSTDCR, OSTDSR, CKOCR. */

 BSP_REG_PROTECT_CGC = 0,

 /* Enables writing to the registers related to operating modes, low power

 consumption, the clock generation circuit, and software reset: SYSCR1,

 SBYCR, MSTPCRA, MSTPCRB, MSTPCRC, OPCCR, RSTCKCR, SOPCCR, MOFCR, MOSCWTCR,

 SWRR. */

 BSP_REG_PROTECT_LPC_CGC_SWR,

 /* Enables writing to the registers related to the LVD: LVCMPCR, LVDLVLR,

 LVD1CR0, LVD1CR1, LVD1SR, LVD2CR0, LVD2CR1, LVD2SR. */

 BSP_REG_PROTECT_LVD,

 /* Enables writing to MPC's PFS registers. */

 BSP_REG_PROTECT_MPC,

 /* This entry is used for getting the number of enum items. This must be the

 last entry. DO NOT REMOVE THIS ENTRY!*/

 BSP_REG_PROTECT_TOTAL_ITEMS

} bsp_reg_protect_t;

4.10.2 Hardware Resource Locks

This typedef defines the available hardware resource locks. For each entry in this enum one software lock will be

allocated in the hardware lock array. Which items are in this list, and how many, will vary depending on the MCU

chosen. The typedef below is for the RX111.

typedef enum

{

 BSP_LOCK_BSC = 0,

 BSP_LOCK_CAC,

 BSP_LOCK_CMT,

 BSP_LOCK_CMT0,

 BSP_LOCK_CMT1,

 BSP_LOCK_CRC,

 BSP_LOCK_DA,

 BSP_LOCK_DOC,

 BSP_LOCK_DTC,

 BSP_LOCK_ELC,

 BSP_LOCK_FLASH,

 BSP_LOCK_ICU,

 BSP_LOCK_IRQ0,

 BSP_LOCK_IRQ1,

 BSP_LOCK_IRQ2,

 BSP_LOCK_IRQ3,

 BSP_LOCK_IRQ4,

 BSP_LOCK_IRQ5,

 BSP_LOCK_IRQ6,

 BSP_LOCK_IRQ7,

 BSP_LOCK_IWDT,

 BSP_LOCK_MPC,

 BSP_LOCK_MTU,

 BSP_LOCK_MTU0,

RX Family Board Support Package Module Using FIT

R01AN1685EU0260 Rev.2.60 Page 18 of 60

July 7, 2014

 BSP_LOCK_MTU1,

 BSP_LOCK_MTU2,

 BSP_LOCK_MTU3,

 BSP_LOCK_MTU4,

 BSP_LOCK_MTU5,

 BSP_LOCK_POE,

 BSP_LOCK_RIIC0,

 BSP_LOCK_RSPI0,

 BSP_LOCK_RTC,

 BSP_LOCK_RTCB,

 BSP_LOCK_S12AD,

 BSP_LOCK_SCI1,

 BSP_LOCK_SCI5,

 BSP_LOCK_SCI12,

 BSP_LOCK_SMCI1,

 BSP_LOCK_SMCI5,

 BSP_LOCK_SMCI12,

 BSP_LOCK_SYSTEM,

 BSP_LOCK_USB0,

 BSP_NUM_LOCKS /* This entry is not a valid lock. It is used for sizing

 g_bsp_Locks[] array below. Do not touch! */

} mcu_lock_t;

4.10.3 Interrupt Error Codes

This typedef defines the error codes that can be returned by the R_BSP_InterruptWrite(), R_BSP_InterruptRead(), and

R_BSP_InterruptControl() functions.

The typedef below is for the RX111.

Other RX MCU’s may support additional interrupt control commands.

typedef enum

{

 BSP_INT_SUCCESS = 0,

 BSP_INT_ERR_NO_REGISTERED_CALLBACK, //There is not a registered callback

 //for this interrupt source

 BSP_INT_ERR_INVALID_ARG, //Illegal argument input

 BSP_INT_ERR_UNSUPPORTED //Operation is not supported by this API

} bsp_int_err_t;

RX Family Board Support Package Module Using FIT

R01AN1685EU0260 Rev.2.60 Page 19 of 60

July 7, 2014

4.10.4 Interrupt Control Commands

This typedef defines the available commands that can be used with the R_BSP_InterruptControl() function.

The typedef below is for the RX111.

Other RX MCU’s may support additional interrupt control commands

typedef enum

{

 BSP_INT_CMD_CALL_CALLBACK = 0, //Calls registered callback function

 //if one exists

 BSP_INT_CMD_INTERRUPT_ENABLE, //Enables a give interrupt (Available for NMI

 //pin, FPU, and Bus Error)

 BSP_INT_CMD_INTERRUPT_DISABLE //Disables a given interrupt (Available for

 //FPU, and Bus Error)

} bsp_int_cmd_t;

4.10.5 Interrupt Callback Function

This typedef defines the callback function type. Callback functions should have a ‘void’ return type and should take an

argument of type ‘void *’.

typedef void (*bsp_int_cb_t)(void *);

RX Family Board Support Package Module Using FIT

R01AN1685EU0260 Rev.2.60 Page 20 of 60

July 7, 2014

4.10.6 Interrupt Sources

This typedef defines the interrupt vectors that can have callbacks registered to them. Note that the options in this

typedef will vary depending on which MCU is being used. The typedef below is for the RX111. Other RX MCU’s may

support additional interrupt sources.

typedef enum

{

 BSP_INT_SRC_EXC_SUPERVISOR_INSTR = 0, //Occurs when privileged instruction

 //is executed in User Mode

 BSP_INT_SRC_EXC_UNDEFINED_INSTR, //Occurs when MCU encounters an

 //unknown instruction

 BSP_INT_SRC_EXC_NMI_PIN, //NMI Pin interrupt

 BSP_INT_SRC_EXC_FPU, //FPU exception

 BSP_INT_SRC_OSC_STOP_DETECT, //Oscillation stop is detected

 BSP_INT_SRC_WDT_ERROR, //WDT underflow/refresh error has

 //occurred

 BSP_INT_SRC_IWDT_ERROR, //IWDT underflow/refresh error has

 //occurred

 BSP_INT_SRC_LVD1, //Voltage monitoring 1 interrupt

 BSP_INT_SRC_LVD2, //Voltage monitoring 2 interrupt

 BSP_INT_SRC_UNDEFINED_INTERRUPT, //Interrupt has triggered for a vector

 //that user did not write a handler

 //for

 BSP_INT_SRC_BUS_ERROR, //Bus error: illegal address access or

 //timeout

 BSP_INT_SRC_TOTAL_ITEMS //DO NOT MODIFY! This is used for

 //sizing the interrupt callback array.

} bsp_int_src_t;

4.10.7 Group Interrupts

The RX64M MCU supports group interrupts, where (up to 32) multiple peripheral interrupt requests are grouped

together as one interrupt request. Interrupts are grouped depending on the peripheral operating clock (PCLKA or

PCLKB) and method to detect interrupt requests (edge or level detection). When a group interrupt request is generated,

the source of the interrupt may be identified by examining the respective (A or B, edge or level) Group Interrupt

Request Register.

4.10.8 Software Configurable Interrupts

The RX64M MCU allows peripheral interrupt sources to be dynamically assigned to a vector number from 128 to 255.

Based on the peripheral operating clock they are divided into dynamic interrupt A and dynamic interrupt B. Dynamic

interrupt B may be used for peripherals that operate in synchronization with PCLKB and can be assigned to interrupt

numbers 128 – 207.

Dynamic interrupt A may be used for peripherals that operate in synchronization with PCKLA and can be assigned to

interrupt numbers 208 – 255.

RX Family Board Support Package Module Using FIT

R01AN1685EU0260 Rev.2.60 Page 21 of 60

July 7, 2014

4.11 Return Values

None.

4.12 Adding Driver to Your Project

Please see Section 6.

RX Family Board Support Package Module Using FIT

R01AN1685EU0260 Rev.2.60 Page 22 of 60

July 7, 2014

5. API Functions

5.1 Summary

The following functions are included in this design:

Function Description

R_BSP_GetVersion Returns version of r_bsp

R_BSP_InterruptsDisable Globally disables interrupts

R_BSP_InterruptsEnable Globally enables interrupts

R_BSP_CpuInterruptLevelRead Reads the CPU’s Interrupt Priority Level

R_BSP_CpuInterruptLevelWrite Writes the CPU’s Interrupt Priority Level

R_BSP_RegisterProtectEnable Enables write protection for selected registers

R_BSP_RegisterProtectDisable Disables write protection for selected registers

R_BSP_SoftwareLock Attempts to reserve a lock

R_BSP_SoftwareUnlock Releases a lock

R_BSP_HardwareLock Attempts to reserve a hardware peripheral lock

R_BSP_HardwareUnlock Releases a hardware peripheral lock

R_BSP_InterruptWrite Registers a callback function for an interrupt

R_BSP_InterruptRead Gets the callback for an interrupt if one is registered.

R_BSP_InterruptControl Executes various other interrupt features.

R_BSP_SoftwareDelay Delays the specified duration.

RX Family Board Support Package Module Using FIT

R01AN1685EU0260 Rev.2.60 Page 23 of 60

July 7, 2014

5.2 R_BSP_GetVersion

Returns the current version of the r_bsp.

Format
uint32_t R_BSP_GetVersion(void);

Parameters
None.

Return Values
Version of the r_bsp.

Properties
Prototyped in file “r_bsp_common.h”
Implemented in file “r_bsp_common.c”

Description
This function will return the version of the currently installed r_bsp. The version number is encoded where
the top 2 bytes are the major version number and the bottom 2 bytes are the minor version number. For
example, Version 4.25 would be returned as 0x00040019.

Reentrant
Yes.

Example
uint32_t cur_version;

/* Get version of installed r_bsp. */

cur_version = R_BSP_GetVersion();

/* Check to make sure version is new enough for this application’s use. */

if (MIN_VERSION > cur_version)

{

 /* This r_bsp version is not new enough and does not have XXX feature

 that is needed by this application. Alert user. */

}

Special Notes:
 This function is specified to be an inline function in r_bsp_common.c.

RX Family Board Support Package Module Using FIT

R01AN1685EU0260 Rev.2.60 Page 24 of 60

July 7, 2014

5.3 R_BSP_InterruptsDisable

Globally disables interrupts.

Format
void R_BSP_InterruptsDisable(void);

Parameters
None.

Return Values
None.

Properties
Prototyped in file “cpu.h”
Implemented in file “cpu.c”

Description
This function globally disables interrupts. This is performed by clearing the ‘I’ bit in the CPU’s Processor
Status Word (PSW) register.

Reentrant
Yes.

Example
/* Disable interrupts so that accessing this critical area will be guaranteed

 to be atomic. */

R_BSP_InterruptsDisable();

/* Access critical resource while interrupts are disabled */

....

/* End of critical area. Enable interrupts. */

R_BSP_InterruptsEnable();

Special Notes:
 The ‘I’ bit of the PSW can only be modified when in Supervisor Mode. If the CPU is in User Mode

and this function is called then a Privileged Instruction Exception will occur.

RX Family Board Support Package Module Using FIT

R01AN1685EU0260 Rev.2.60 Page 25 of 60

July 7, 2014

5.4 R_BSP_InterruptsEnable

Globally enables interrupts.

Format
void R_BSP_InterruptsEnable(void);

Parameters
None.

Return Values
None.

Properties
Prototyped in file “cpu.h”
Implemented in file “cpu.c”

Description
This function globally enables interrupts. This is performed by setting the ‘I’ bit in the CPU’s Processor Status
Word (PSW) register.

Reentrant
Yes.

Example
/* Disable interrupts so that accessing this critical area will be guaranteed

 to be atomic. */

R_BSP_InterruptsDisable();

/* Access critical resource while interrupts are disabled */

....

/* End of critical area. Enable interrupts. */

R_BSP_InterruptsEnable();

Special Notes:
 The ‘I’ bit of the PSW can only be modified when in Supervisor Mode. If the CPU is in User Mode

and this function is called then a Privileged Instruction Exception will occur.

RX Family Board Support Package Module Using FIT

R01AN1685EU0260 Rev.2.60 Page 26 of 60

July 7, 2014

5.5 R_BSP_CpuInterruptLevelRead

Reads the CPU’s Interrupt Priority Level.

Format
uint32_t R_BSP_CpuInterruptLevelRead(void);

Parameters
None.

Return Values
The CPU’s Interrupt Priority Level.

Properties
Prototyped in file “cpu.h”
Implemented in file “cpu.c”

Description
This function reads the CPU’s Interrupt Priority Level. This is level is stored in the IPL bits of the Processor
Status Word (PSW) register.

Reentrant
Yes.

Example
uint32_t cpu_ipl;

/* Read the CPU’s Interrupt Priority Level. */

cpu_ipl = R_BSP_CpuInterruptLevelRead();

Special Notes:
None.

RX Family Board Support Package Module Using FIT

R01AN1685EU0260 Rev.2.60 Page 27 of 60

July 7, 2014

5.6 R_BSP_CpuInterruptLevelWrite

Writes the CPU’s Interrupt Priority Level.

Format
bool R_BSP_CpuInterruptLevelWrite(uint32_t level);

Parameters
level

The level to write to the CPU’s IPL.

Return Values
true: Successful, CPU’s IPL has been written
false: Failure, provided ‘level’ has invalid IPL value

Properties
Prototyped in file “cpu.h”
Implemented in file “cpu.c”

Description
This function writes the CPU’s Interrupt Priority Level. This is level is stored in the IPL bits of the Processor
Status Word (PSW) register. This function does check to make sure that the IPL being written is valid. The
maximum and minimum valid settings for the CPU IPL are defined in mcu_info.h using the
BSP_MCU_IPL_MAX and BSP_MCU_IPL_MIN macros.

Reentrant
Yes.

Example
/* Response time is critical during this portion of the application. Set the

 CPU’s Interrupt Priority Level so that interrupts below the set

 threshold are disabled. Interrupt vectors with IPLs higher than this

 threshold will still be accepted and will not have to contend with the

 lower priority interrupts. */

if (false == R_BSP_CpuInterruptLevelWrite(HIGH_PRIORITY_THRESHOLD))

{

 /* Error in setting CPU’s IPL. Invalid IPL was provided. */

}

/* Only high priority interrupts (as defined by user) will be accepted during

 this period. */

....

/* Time sensitive period is over. Set CPU’s IPL back to lower value so that

 lower priority interrupts can now be serviced again. */

if (false == R_BSP_CpuInterruptLevelWrite(LOW_PRIORITY_THRESHOLD))

{

 /* Error in setting CPU’s IPL. Invalid IPL was provided. */

}

Special Notes:
 The CPU’s IPL can only be modified by the user when in Supervisor Mode. If the CPU is in User

Mode and this function is called then a Privileged Instruction Exception will occur.

RX Family Board Support Package Module Using FIT

R01AN1685EU0260 Rev.2.60 Page 28 of 60

July 7, 2014

5.7 R_BSP_RegisterProtectEnable

Enables write protection for selected registers.

Format
void R_BSP_RegisterProtectEnable(bsp_reg_protect_t regs_to_protect);

Parameters
regs_to_protect

Which registers to enable write protection for.

Return Values
None.

Properties
Prototyped in file “cpu.h”
Implemented in file “cpu.c”

Description
This function enables write protection for the input registers. Only certain MCU registers have the ability to
be write protected. To see which registers are available to be protected by this function look at the
bsp_reg_protect_t enum in cpu.h for your MCU.

This function, and R_BSP_RegisterProtectDisable(), use counters for each entry in the bsp_reg_protect_t
enum so that users can call these functions multiple times without problem. An example of why this is
needed is shown below in the Special Notes section below.

Reentrant
No.

Example
/* Write access must be enabled before writing to MPC registers. */

R_BSP_RegisterProtectDisable(BSP_REG_PROTECT_MPC);

/* MPC registers are now writable. */

/* Setup Port 2 Pin 6 as TXD1 for SCI1. */

MPC.P26PFS.BYTE = 0x0A;

/* Setup Port 4 Pin 2 as AD input for potentiometer. */

MPC.P42PFS.BYTE = 0x80;

/* More pin setup. */

....

/* Enable write protection for MPC registers to protect against accidental

 writes. */

R_BSP_RegisterProtectEnable(BSP_REG_PROTECT_MPC);

RX Family Board Support Package Module Using FIT

R01AN1685EU0260 Rev.2.60 Page 29 of 60

July 7, 2014

Special Notes:
This is an example showing why counters are needed for register protection.

1. The user’s application calls the open function for r_module1.
2. r_module1 disables write protection for some registers that are required to be written during

initialization of this module by calling R_BSP_RegisterProtectDisable(). At this point the counter for
this protected registers is incremented by 1.

3. r_module1 writes to unprotected registers that were made writable by previous step.
4. r_module1 also depends upon r_module2 and needs to call its open function, R_MODULE2_Open().
5. In the r_module2 function it also needs to write to the same protected registers as r_module1.

r_module2 calls R_BSP_RegisterProtectDisable() again since it does not know that r_module1
already enabled write access to these registers. The counter for the protected register is
incremented by 1 and is now 2.

6. r_module2 writes to unprotected registers that were made writable by previous step.
7. r_module2 is done writing to the protected registers so it calls R_BSP_RegisterProtectEnable() to re-

enable write protection for the registers. The counter for the protected register is decremented by 1
and is now 1. Since the counter is not 0 the code knows that it should not actually re-enable
protection yet.

8. Execution goes back to R_MODULE1_Open() where it continues to write to registers. Here is where
the problem can occur. If counters are not used then the call to R_BSP_RegisterProtectEnable() by
r_module2 (Step #7) can prevent the registers in r_module1 from being written.

9. r_module1 is done writing to the protected registers so it calls R_BSP_RegisterProtectEnable() to re-
enable write protection for the registers. The counter for the protected register is decremented by 1
and is now 0. Since the counter is 0 the API code knows that it is safe to re-enable write protection
for the registers.

Figure 5-1 : Register Protection Example

RX Family Board Support Package Module Using FIT

R01AN1685EU0260 Rev.2.60 Page 30 of 60

July 7, 2014

5.8 R_BSP_RegisterProtectDisable

Disables write protection for selected registers.

Format
void R_BSP_RegisterProtectDisable(bsp_reg_protect_t regs_to_protect);

Parameters
regs_to_protect

Which registers to disable write protection for.

Return Values
None.

Properties
Prototyped in file “cpu.h”
Implemented in file “cpu.c”

Description
This function disables write protection for the input registers. Only certain MCU registers have the ability to
be write protected. To see which registers are available to be protected by this function look at the
bsp_reg_protect_t enum in cpu.h for your MCU.

This function, and R_BSP_RegisterProtectEnable(), use counters for each entry in the bsp_reg_protect_t
enum so that users can call these functions multiple times without problem. An example of why this is
needed is shown in the Special Notes section of Section 5.7.

Reentrant
No.

Example
/* Write access must be enabled before writing to CGC registers. */

R_BSP_RegisterProtectDisable(BSP_REG_PROTECT_CGC);

/* CGC registers are spread amongst two protection bits. */

R_BSP_RegisterProtectDisable(BSP_REG_PROTECT_LPC_CGC_SWR);

/* CGC registers are now writable. */

/* Select PLL as clock source. */

SYSTEM.SCKCR3.WORD = 0x0400;

/* More clock setup. */

....

/* Enable write protection for CGC registers to protect against accidental

 writes. */

R_BSP_RegisterProtectEnable(BSP_REG_PROTECT_CGC);

R_BSP_RegisterProtectEnable(BSP_REG_PROTECT_LPC_CGC_SWR);

Special Notes:
None.

RX Family Board Support Package Module Using FIT

R01AN1685EU0260 Rev.2.60 Page 31 of 60

July 7, 2014

5.9 R_BSP_SoftwareLock

Attempts to reserve a lock.

Format
bool R_BSP_SoftwareLock(BSP_CFG_USER_LOCKING_TYPE * const plock);

Parameters
plock

Pointer to lock structure with lock to try and acquire.

Return Values
true: Successful, lock was available and acquired
false: Failure, lock was already acquired and is not available

Properties
Prototyped in file “locking.h”
Implemented in file “locking.c”

Description
This function implements an atomic locking mechanism. Locks can be used in numerous ways. Two
common uses of locks are to protect critical sections of code and to protect against duplicate resource
allocation. For protecting critical sections of code the user would require that the code first obtain the critical
section’s lock before executing. An example of protecting against duplicate resource allocation would be if
the user had two FIT modules that used the same peripheral. For example, the user may have one FIT
module that uses the SCI peripheral in UART mode and another FIT module that uses the SCI peripheral in
I2C mode. To make sure that both modules cannot use the same SCI channel, locks can be used.

Care should taken when using locks as they do not provide advanced features one might expect from an
RTOS semaphore or mutex. If used improperly locks can lead to deadlock in the user’s system.

Users can override the default locking mechanisms. See Section 3.2.8 for more information.

Reentrant
Yes.

Example
This shows an example of using locks with the Virtual EEPROM code. This FIT module does not access any
peripherals directly, but still needs protection against reentrancy.

/* Used for locking state of VEE */

static BSP_CFG_USER_LOCKING_TYPE g_vee_lock;

/***

* Function Name: vee_lock_state

* Description : Tries to lock the VEE state

* Arguments : state -

* Which state to try to transfer to

* Return value : VEE_SUCCESS -

* Successful, state taken

* VEE_BUSY -

* Data flash is busy, state not taken

***/

static uint8_t vee_lock_state (vee_states_t state)

{

 /* Local return variable */

 uint8_t ret = VEE_SUCCESS;

 /* Try to lock VEE to change state. */

 /* Check to see if lock was successfully taken. */

 if(false == R_BSP_SoftwareLock(&g_vee_lock))

 {

 /* Another operation is on-going */

 return VEE_BUSY;

 }

RX Family Board Support Package Module Using FIT

R01AN1685EU0260 Rev.2.60 Page 32 of 60

July 7, 2014

 /* Check VEE status to make sure we are not interfering with another

 thread */

 if(state == VEE_READING)

 {

 /* If another read comes in while the state is reading then we are OK */

 if((g_vee_state != VEE_READY) && (g_vee_state != VEE_READING))

 {

 /* VEE is busy */

 ret = VEE_BUSY;

 }

 }

 else

 {

 /* If we are doing something other than reading then we must be in the

 VEE_READY state */

 if(g_vee_state != VEE_READY)

 {

 /* VEE is busy */

 ret = VEE_BUSY;

 }

 }

 if(ret == VEE_SUCCESS)

 {

 /* Lock state */

 g_vee_state = state;

 }

 /* Release lock. */

 R_BSP_SoftwareUnlock(&g_vee_lock);

 return ret;

}

Special Notes:
None.

RX Family Board Support Package Module Using FIT

R01AN1685EU0260 Rev.2.60 Page 33 of 60

July 7, 2014

5.10 R_BSP_SoftwareUnlock

Releases a lock.

Format
bool R_BSP_SoftwareUnlock(BSP_CFG_USER_LOCKING_TYPE * const plock);

Parameters
plock

Pointer to lock structure with lock to release.

Return Values
true: Successful, lock was released
false: Failure, lock could not be released

Properties
Prototyped in file “locking.h”
Implemented in file “locking.c”

Description
This function releases a lock that was previously acquired using the R_BSP_SoftwareLock() function. Please
see Section 5.9 for more information on locks.

Reentrant
Yes.

Example
This shows an example of using locks for a critical section of code.

/* Used for locking critical section of code. */

static BSP_CFG_USER_LOCKING_TYPE g_critical_lock;

static bool critical_area_example (void)

{

 /* Try to acquire lock for executing critical section below. */

 if(false == R_BSP_SoftwareLock(&g_critical_lock))

 {

 /* Lock has already been acquired. */

 return false;

 }

 /* BEGIN CRITICAL SECTION. */

 /* Execute critical section. */

 /* END CRITICAL SECTION. */

 /* Release lock. */

 R_BSP_SoftwareUnlock(&g_critical_lock);

 return true;

}

Special Notes:
None.

RX Family Board Support Package Module Using FIT

R01AN1685EU0260 Rev.2.60 Page 34 of 60

July 7, 2014

5.11 R_BSP_HardwareLock

Attempts to reserve a hardware peripheral lock.

Format
bool R_BSP_HardwareLock(mcu_lock_t const hw_index);

Parameters
hw_index

Index of lock to acquire from the hardware lock array.

Return Values
true: Successful, lock was available and acquired
false: Failure, lock was already acquired and is not available

Properties
Prototyped in file “locking.h”
Implemented in file “locking.c”

Description
This function attempts to acquire the lock for a hardware resource of the MCU. Instead of sending in a
pointer to a lock as with the R_BSP_SoftwareLock() function, the user sends in an index to an array that
holds 1 lock per MCU hardware resource. This array is shared amongst all FIT modules and user code
therefore allowing multiple FIT modules (and user code) to use the same locks. The user can see the
available hardware resources by looking at the mcu_lock_t enum in mcu_locks.h. These enum values are
also the index into the hardware lock array. The same atomic locking mechanisms from the
R_BSP_SoftwareLock() function are used with this function as well.

Reentrant
Yes.

Example
This example shows hardware locks being used to control access to a RSPI channel.

/**

* Function Name: R_RSPI_Send

* Description : Send data over RSPI channel.

* Arguments : channel -

* Which channel to use.

* pdata -

* Pointer to data to transmit

* bytes -

* Number of bytes to transmit

* Return Value : true -

* Data sent successfully.

* false -

* Could not obtain lock.

**/

bool R_RSPI_Send(uint8_t channel, uint8_t * pdata, uint32_t bytes)

{

 mcu_lock_t rspi_channel_lock;

 /* Check and make sure channel is valid. */

 ...

 /* Use appropriate RSPI channel lock. */

 if (0 == channel)

 {

 rspi_channel_lock = BSP_LOCK_RSPI0;

 }

 else

 {

 rspi_channel_lock = BSP_LOCK_RSPI1;

 }

RX Family Board Support Package Module Using FIT

R01AN1685EU0260 Rev.2.60 Page 35 of 60

July 7, 2014

 /* Attempt to obtain lock so we know we have exclusive access to RSPI

 channel. */

 if (false == R_BSP_HardwareLock(rspi_channel_lock))

 {

 /* Lock has already been acquired by another task. Need to try again

 later. */

 return false;

 }

 /* Else, lock was acquired. Continue on with send operation. */

 ...

 /* Now that send operation is completed, release hold on lock so that other

 tasks may use this RSPI channel. */

 R_BSP_HardwareUnlock(rspi_channel_lock);

 return true;

}

Special Notes:
Each entry in the mcu_lock_t enum in mcu_locks.h will be allocated a lock. On RX MCUs, each lock is
required to be 4-bytes. If RAM space is an issue then the user can remove the entries from the mcu_lock_t
enum that they are not using. For example, if the user is not using the CRC peripheral then they could delete
the BSP_LOCK_CRC entry. The user will save 4-bytes per deleted entry.

RX Family Board Support Package Module Using FIT

R01AN1685EU0260 Rev.2.60 Page 36 of 60

July 7, 2014

5.12 R_BSP_HardwareUnlock

Releases a hardware peripheral lock.

Format
bool R_BSP_HardwareUnlock(mcu_lock_t const hw_index);

Parameters
hw_index

Index of lock to release from the hardware lock array.

Return Values
true: Successful, lock was released
false: Failure, lock could not be released

Properties
Prototyped in file “locking.h”
Implemented in file “locking.c”

Description
This function attempts to release the lock for a hardware resource of the MCU that was previously acquired
using the R_BSP_HardwareLock() function. For more information on hardware locks please see Section
5.11.

Reentrant
Yes.

Example
This example shows hardware locks being used to prevent duplicate hardware resource allocation. The
R_SCI_Open() function takes the lock so all modules know that the SCI channel is being used.
R_SCI_Close() releases the lock thereby making it available for any module to use.

bool R_SCI_Open(uint8_t channel, ...)

{

 mcu_lock_t sci_channel_lock;

 /* Check and make sure channel is valid. */

 ...

 /* Use appropriate RSPI channel lock. */

 if (0 == channel)

 {

 sci_channel_lock = BSP_LOCK_SCI0;

 }

 else if (1 == channel)

 {

 sci_channel_lock = BSP_LOCK_SCI1;

 }

 ... continue for other channels ...

 /* Attempt to obtain lock so we know we have exclusive access to SCI

 channel. */

 if (false == R_BSP_HardwareLock(sci_channel_lock))

 {

 /* Lock has already been acquired by another task or another FIT module.

 Need to try again later. */

 return false;

 }

 /* Else, lock was acquired. Continue on initialization. */

 ...

}

RX Family Board Support Package Module Using FIT

R01AN1685EU0260 Rev.2.60 Page 37 of 60

July 7, 2014

bool R_SCI_Close(uint8_t channel, ...)

{

 mcu_lock_t sci_channel_lock;

 /* Check and make sure channel is valid. */

 ...

 /* Use appropriate RSPI channel lock. */

 if (0 == channel)

 {

 sci_channel_lock = BSP_LOCK_SCI0;

 }

 else if (1 == channel)

 {

 sci_channel_lock = BSP_LOCK_SCI1;

 }

 ... continue for other channels ...

 /* Clean up and turn off this SCI channel. */

 /* Release hardware lock for this channel. */

 R_BSP_HardwareUnlock(sci_channel_lock);

}

Special Notes:
Each entry in the mcu_lock_t enum in mcu_locks.h will be allocated a lock. On RX MCUs, each lock is
required to be 4-bytes. If RAM space is an issue then the user can remove the entries from the mcu_lock_t
enum that they are not using. For example, if the user is not using the CRC peripheral then they could delete
the BSP_LOCK_CRC entry. The user will save 4-bytes per deleted entry.

RX Family Board Support Package Module Using FIT

R01AN1685EU0260 Rev.2.60 Page 38 of 60

July 7, 2014

5.13 R_BSP_InterruptWrite

Registers a callback function for an interrupt.

Format
bsp_int_err_t R_BSP_InterruptWrite(bsp_int_src_t vector,

 bsp_int_cb_t callback);

Parameters
vector

Which interrupt to register a callback for. See Section 4.10.6.
callback

Pointer to function to call when interrupt occurs. See Section 4.10.5.

Return Values
BSP_INT_SUCCESS: Successful, callback has been registered
BSP_INT_ERR_INVALID_ARG: Invalid function address input, any previous function has been

unregistered

Properties
Prototyped in file “mcu_interrupts.h”
Implemented in file “mcu_interrupts.c”

Description
Registers a callback function for an interrupt. If FIT_NO_FUNC, NULL, or any other invalid function address
is passed for the callback argument then any previously registered callbacks are unregistered.

If one of the interrupts that is handled by this code is triggered then the interrupt handler will query this code
to see if a valid callback function is registered. If one is found then the callback function will be called. If one
is not found then the interrupt handler will clear the appropriate flag(s) and exit.

If the user has a callback function registered and wishes to no longer handle the interrupt then the user
should call this function again with FIT_NO_FUNC as the vector parameter.

Reentrant
No.

Example
/* Prototype for callback function. */

void bus_error_callback(void * pdata);

void main (void)

{

 bsp_int_err_t err;

 /* Register bus_error_callback() to be called whenever a bus error occurs */

 err = R_BSP_InterruptWrite(BSP_INT_SRC_BUS_ERROR, bus_error_callback);

 if (BSP_INT_SUCCESS != err)

 {

 /* Error in registering callback. Alert user. */

 ...

 }

}

void bus_error_callback (void * pdata)

{

 /* Bus error has occurred. Handle accordingly. */

 ...

}

Special Notes:
 Use of FIT_NO_FUNC is preferred over NULL since access to the address defined by

FIT_NO_FUNC will cause a bus error which is easy for the user to catch. NULL typically resolves to
0 which is a valid address on RX MCUs.

RX Family Board Support Package Module Using FIT

R01AN1685EU0260 Rev.2.60 Page 39 of 60

July 7, 2014

5.14 R_BSP_InterruptRead

Gets the callback for an interrupt if one is registered.

Format
bsp_int_err_t R_BSP_InterruptRead(bsp_int_src_t vector,

 bsp_int_cb_t * callback);

Parameters
vector

Which interrupt to read the callback for. See Section 4.10.6.
callback

Pointer to where to store callback address. See Section 4.10.5.

Return Values
BSP_INT_SUCCESS: Successful, callback address has been returned
BSP_INT_ERR_NO_REGISTERED_CALLBACK: No valid callback has been registered for this interrupt

source.

Properties
Prototyped in file “mcu_interrupts.h”
Implemented in file “mcu_interrupts.c”

Description
Returns the callback function address for an interrupt if one has been registered. If a callback function has
not been registered then an error is returned and nothing is stored to the callback address.

Reentrant
No.

Example
/* This function handles bus error interrupts. The address for this function

 is located in the bus error interrupt vector. */

void bus_error_isr (void)

{

 bsp_int_err_t err;

 bsp_int_cb_t * user_callback;

 /* Bus error has occurred, see if a callback function has been registered */

 err = R_BSP_InterruptRead(BSP_INT_SRC_BUS_ERROR, user_callback);

 if (BSP_INT_SUCCESS == err)

 {

 /* Valid callback function found. Call it. */

 user_callback ();

 }

 /* Clear bus error flags. */

 ...

}

Special Notes:
 None.

RX Family Board Support Package Module Using FIT

R01AN1685EU0260 Rev.2.60 Page 40 of 60

July 7, 2014

5.15 R_BSP_SoftwareDelay

Delay the specified duration in units and return.

Format
bool R_BSP_SoftwareDelay(uint32_t delay, bsp_delay_units_t units)

Parameters
delay

the number of 'units' to delay.
units

the 'base' for the units specified. Valid values are:
 BSP_DELAY_MICROSECS, BSP_DELAY_MILLISECS, BSP_DELAY_SECS

Return Values
True if delay executed

False if delay/units combination resulted in overflow/underflow

Properties
Prototyped in file “r_bsp_common.h”
Implemented in file “r_bsp_common.c”

Description
This is function that may be called for all MCU targets to implement a specific wait time. Accuracy is very
good at millisecond and second level, less so at microsecond level simply due to the overhead associated
with implementing the call.

Note that there is an additional overhead of 20 cycles for the actual delayWait() function call and return.

Reentrant
No.

Example
/* Delay 5 seconds before returning */

R_BSP_SoftwareDelay(5, BSP_DELAY_SECS);

/* Delay 5 milliseconds before returning */

R_BSP_SoftwareDelay(5, BSP_DELAY_MILLISECS);

/* Delay 50 microseconds before returning */

R_BSP_SoftwareDelay(50, BSP_DELAY_MICROSECS);

RX Family Board Support Package Module Using FIT

R01AN1685EU0260 Rev.2.60 Page 41 of 60

July 7, 2014

6. Project Setup

This section details creating an e2studio project and adding the r_bsp to it.

6.1 Creating Empty Project

To start off an e2studio project will be created and modified. For this example a project will be created for the

RSKRX111.

1. Open your e2studio workspace.

2. Click File >> New >> C Project

3. Enter the project name. In ‘Project type:’ choose ‘Sample Project’. In ‘Toolchains’ choose ‘Renesas RXC

Toolchain’. Click Next.

RX Family Board Support Package Module Using FIT

R01AN1685EU0260 Rev.2.60 Page 42 of 60

July 7, 2014

4. Choose your debug hardware and MCU.

5. For the ‘Select Additional CPU Options’ window, configure as needed and click Next.

6. For the ‘Global Options Settings’ window, configure as needed and click Next.

7. For the ‘Standard Header Files’ window, select ‘C(C99)’ for ‘Library configuration’. Configure which

libraries are brought in as needed and click Next.

8. Uncheck all boxes for the window shown below:

9. Click Finish. In the ‘Summary’ window that pops up, click OK.

RX Family Board Support Package Module Using FIT

R01AN1685EU0260 Rev.2.60 Page 43 of 60

July 7, 2014

10. Expand your newly created project in the ‘Project Explorer’ pane. Expand the ‘src’ directory and delete all

files except for the one that contains the main() function. In this example the dbsct.c and typedefine.h files

were deleted.

11. Right-click on the project in the ‘Project Explorer’ pane and click Properties.

12. We will now setup the linker sections. The main change in these steps will be removing some default linker

sections that are not used by the r_bsp.

13. Expand ‘C/C++ Build’ and click ‘Settings’.

14. Under ‘Tool Settings’ select Linker >> Section.

RX Family Board Support Package Module Using FIT

R01AN1685EU0260 Rev.2.60 Page 44 of 60

July 7, 2014

15. In the ‘Sections viewer’ pane note the address that is allocated for the section ‘PResetPRG’. This address

should be beginning of user ROM for your MCU. Write down this address then click on the ‘PResetPRG’

section and click ‘Remove Section’.

16. Click on the section that was directly beneath ‘PResetPRG’ (in this example it is ‘C_1’) and change its address

to the address that you recorded for ‘PResetPRG’.

17. Click on the ‘PIntPRG’ section and click ‘Remove Section’.

18. Click on the ‘P’ section and click the ‘Move Up’ button. This should remove the address from the section and

combine it with the previous section block.

19. Click on the ‘P’ section and change it to ‘P*’. The use of the ‘*’ character acts as a wildcard and will catch all

‘P’ sections used in your project.

20. Verify that the address for the ‘FIXEDVECT’ section is set to 0xFFFFFF80.

21. VERY IMPORTANT, remember to click the Apply button. If the Apply button is not visible in your screen

then use the scroll bars on the right of the window to find it.

22. Your linker screen should now look similar to the one below.

RX Family Board Support Package Module Using FIT

R01AN1685EU0260 Rev.2.60 Page 45 of 60

July 7, 2014

23. We will now setup the linker to fill in unused interrupt vectors with the address of the

undefined_interrupt_source_isr() function. Under ‘Tool Settings’ select Linker >> User.

24. Click the ‘Add’ button (with green ‘+’ symbol) and in the window that pops up enter:

-vect=_undefined_interrupt_source_isr

25. Click OK to close the pop up window. Verify the option has been added to the list and click Apply.

26. Click OK to return to your project.

RX Family Board Support Package Module Using FIT

R01AN1685EU0260 Rev.2.60 Page 46 of 60

July 7, 2014

6.2 Adding r_bsp with e2studio FIT Plug-in

Now that we have an empty e2studio project the r_bsp code can be added. Two methods will be presented. The first is

to use the FIT Plug-in which is described in this section. The other method is to add the r_bsp manually which will be

discussed in Section 6.3.

1. Open up the FIT Plug-in by clicking File >> New >> Renesas FIT Module.

2. Choose which board and MCU you are using by selecting options in the Family, Series, Group, and Target

Board dropdowns. In this example the RSKRX111 is being used.

3. Click on the version of the r_bsp you wish to use in the module list.

4. Verify that your project is shown in the ‘Name of the project to add FIT modules’ dropdown near the top of

the window.

5. Click Finish.

6. A window will pop up alerting you that the plug-in has automatically updated your include paths for the new

module. Click OK.

RX Family Board Support Package Module Using FIT

R01AN1685EU0260 Rev.2.60 Page 47 of 60

July 7, 2014

7. The plug-in will pop up the include paths for your project. Verify that an include is present for the r_bsp and

r_config folders. Click Apply and then click OK to close the window.

8. Verify that there are now r_bsp and r_config folders in your project.

9. Expand the r_bsp folder and verify that the proper board and mcu folders were copied.

10. Which board is being used needs to be selected in the platform.h header file. Open up platform.h and

uncomment the #include for the board you are using. In this example the RSKRX111 is being used so the

#include for “./board/rskrx111/r_bsp.h” is uncommented.

RX Family Board Support Package Module Using FIT

R01AN1685EU0260 Rev.2.60 Page 48 of 60

July 7, 2014

11. In order to configure the r_bsp the user needs to create an r_bsp_config.h file. Copy the

r_bsp_config_reference.h file from your board folder and paste it into the r_config folder. Right-click on the

file in the r_config folder and click Rename. Rename the file to r_bsp_config.h.

12. Configure the r_bsp for your board by going through and modifying the r_bsp_config.h file as needed.

13. For RX64M MCU’s configuring the bsp requires that the user also create an r_bsp_interrupt_config.h file.

Copy the r_bsp_interrupt_config_reference.h file from your board folder and paste it into the r_config folder.

Right-click on the file in the r_config folder and click Rename. Rename the file to r_bsp_interrupt_config.h.

14. Configure the dynamic interrupts for your RX64M board by going through and modifying the

r_bsp_interrupt_config.h file as needed.

15. Build the project.

6.3 Adding r_bsp Manually

This section will give instruction on how to add the r_bsp to an e2studio project manually (without use of the FIT Plug-

in).

1. Copy the r_bsp folder to your e2studio project’s root. Once clicking Copy in Windows you can right-click on

your project in e2studio and click Paste.

RX Family Board Support Package Module Using FIT

R01AN1685EU0260 Rev.2.60 Page 49 of 60

July 7, 2014

2. Expand the r_bsp >> board folder and delete all of the folders except the one for the board you are using. You

can leave the ‘user’ directory if you wish to have a directory to start off with when you create your own BSP.

3. Expand the r_bsp >> mcu folder and delete all of the folders except the one for your MCU group and the one

named all.

4. It is recommended to create a directory to store all FIT configuration files. Having one place for configuration

files make them easy to find and easy to backup. The default name for this folder is r_config. If an r_config

folder was not included in your r_bsp zip file then we will create one here. Create an r_config folder for your

project by right-clicking on your project and choosing New >> Folder. In the window that pops up enter

‘r_config’ for the folder name and click Finish.

5. We will now setup include paths for the r_bsp and r_config folders. Right-click on your project and click

Properties.

6. Under ‘Tool Settings’ select Compiler >> Source.

7. In the ‘Include file directories’ box click the ‘Add’ button.

RX Family Board Support Package Module Using FIT

R01AN1685EU0260 Rev.2.60 Page 50 of 60

July 7, 2014

8. The ‘Add directory path’ window will pop up; click the Workspace button.

9. In the ‘Folder selection’ window choose the r_bsp folder and click OK.

10. Verify that your window looks like the one above and click OK.

11. Back in the main Properties window verify that you now have an include path for the r_bsp.

12. Follow the same steps to add an include path for the r_config folder.

13. Back in the main Properties window verify that you now have an include path for the r_bsp and r_config

folders and click Apply. Click OK to return to your project.

14. Which board is being used needs to be selected in the platform.h header file. Open up platform.h and

uncomment the #include for the board you are using. In this example the RSKRX111 is being used so the

#include for “./board/rskrx111/r_bsp.h” is uncommented.

RX Family Board Support Package Module Using FIT

R01AN1685EU0260 Rev.2.60 Page 51 of 60

July 7, 2014

15. In order to configure the r_bsp the user needs to create an r_bsp_config.h file. Copy the

r_bsp_config_reference.h file from your board folder and paste it into the r_config folder. Right-click on the

file in the r_config folder and click Rename. Rename the file to r_bsp_config.h.

16. Configure the r_bsp for your board by going through and modifying the r_bsp_config.h file as needed.

17. For RX64M MCU’s configuring the bsp requires that the user also create an r_bsp_interrupt_config.h file.

Copy the r_bsp_interrupt_config_reference.h file from your board folder and paste it into the r_config folder.

Right-click on the file in the r_config folder and click Rename. Rename the file to r_bsp_interrupt_config.h.

18. Configure the dynamic interrupts for your RX64M board by going through and modifying the

r_bsp_interrupt_config.h file as needed.

19. Build the project.

RX Family Board Support Package Module Using FIT

R01AN1685EU0260 Rev.2.60 Page 52 of 60

July 7, 2014

6.4 Creating a BSP Module for a Custom Board

The r_bsp is provided for users to create their own r_bsp for a custom board (custom BSP). This section describes how

to create and build a new project when using a custom BSP. The RX111 MCU is used as an example in this document.

Figure 6.1 shows the Procedure for Creating and Building a Custom BSP.

Step 2. Add the BSP module

Step 3. Create a folder for the custom board

Step 4. Store necessary files

Step 5. Modify files suited to

the custom board

Step 7. Modify the platform.h file

Step 1. Create a new project

End

(build the project)

Start

Step 6. Copy and rename the

r_bsp_config_reference.h file

Figure 6.1 Procedure for Creating and Building a Custom BSP

RX Family Board Support Package Module Using FIT

R01AN1685EU0260 Rev.2.60 Page 53 of 60

July 7, 2014

Step 1. Create a New Project (Mandatory)

To create a new project, refer to "Creating Empty Project" in the "Board Support Package Module Using Firmware

Integration Technology" application note (R01AN1685).

Step 2. Add the BSP Module (Mandatory)

To add the BSP module to the new project (user project) created in step 1, refer to "Adding r_bsp with e2studio FIT

Plug-in" in the "Board Support Package Module Using Firmware Integration Technology" application note

(R01AN1685).

Choose the following options when adding the BSP module on the FIT plug-in.

 Family, Series, Group: MCU used.

 Target Board: MCU board used.

For example, when using the RX111 to create the user board, choose "RSKRX111" or "RDKRX111". By choosing the

appropriate options here, the board folder for the custom board can be created easily.

 Choose the
MCU used.

Choose the MCU board used.

RX Family Board Support Package Module Using FIT

R01AN1685EU0260 Rev.2.60 Page 54 of 60

July 7, 2014

Step 3. Create a Folder for the Custom Board

The r_bsp folder should now be present in the user project. Below, the board folder under the r_bsp folder is modified

to create the custom BSP. The code in the mcu folder does not require modification.

1) Confirm that the board folder (rskrx111 here) specified in step 2 and the user folder are generated in the board

folder under the r_bsp folder.

2) Use the user folder as the folder for the custom board (optional).

Rename the folder name (optional). The folder name does not have to be changed.

Folder structure after the
BSP module is added.

Example when the folder name is
changed for the custom board

Folder for setting of the
board specified

Folder for the
custom board

RX Family Board Support Package Module Using FIT

R01AN1685EU0260 Rev.2.60 Page 55 of 60

July 7, 2014

Step 4. Store Necessary Files (Mandatory)

Store necessary files in the folder created in step 3.

1) Copy all files in the rskrx111 folder and paste them in the folder for the custom board. Then overwrite the r_bsp.h

file.

2) Exclude the rskrx111 folder from build.

(The folder can be deleted if it is not necessary after the folder for the custom board is created.)

 Right click the folder.

Select “Exclude from build…”
from the menu.

RX Family Board Support Package Module Using FIT

R01AN1685EU0260 Rev.2.60 Page 56 of 60

July 7, 2014

Step 5. Modify Files Suited to the Custom Board (Mandatory)

Modify the following four files suited to the custom board.

1. hwsetup.c

This file executes the following four functions.

 Function: output_ports_configure

This function initializes ports used for LEDs, switchs, SCI, and ADC.

Ports need to be configured with either of procedures below according to the board used.

If not configuring pins in this function:

1) Comment out or delete the function declaration of the output_ports_configure function.

2) Delete the output_ports_configure function which is called in the hardware_setup function.

3) Comment out or delete the output_ports_configure function.

Then configure settings described in "2. *board_specific_defines*.h" as well.

If configuring pins in this function:

1) Comment out or delete the source code in the output_ports_configure function.

2) Configure pins according to the board used.

 Function: bsp_non_existent_port_init

This function initializes nonexistent ports. No additional processing is required for this function.

 Function: interrupts_configure

This function configures interrupt settings which are performed prior to the main function.

When such settings are required, add the settings in this function.

 Function: peripheral_modules_enable

This function configures settings for peripheral functions which are performed prior to the main function.

When such settings are required, add the settings in this function.

Examples of processing are shown below when not configuring pins in the output_ports_configure function.

Comment out or delete this part.

RX Family Board Support Package Module Using FIT

R01AN1685EU0260 Rev.2.60 Page 57 of 60

July 7, 2014

← コメントアウト もしくは削除する

Comment out or delete this line.

Comment out or delete this
part.

RX Family Board Support Package Module Using FIT

R01AN1685EU0260 Rev.2.60 Page 58 of 60

July 7, 2014

2. *board_specific_defines*.h

The board used becomes the name of this file (e.g. rskrx111.h). This file has definitions of pins used for switches,

LEDs, and so on, and their settings vary depending on the board used.

However this file is not necessary when using the custom board. Perform the following steps.

1) Delete the *board_specific_defines*.h file from the folder for the custom board.

2) Delete the following line in the r_bsp.h file.

#include "board/rskrx111/rskrx111.h"

3. r_bsp.h

This header file is included in platform.h and has all #includes required for the board and the MCU. The include

paths associated with the board need to be modified.

1) Modify the include paths which start with "board/" as follows:

Change the path to "board/name of the folder for the custom board/file name".

Example:

Before modification: #include "board/rskrx111/rskrx111.h"

After modification: #include "board/test_board/rskrx111.h"

Change this part to the folder name for the custom board.

RX Family Board Support Package Module Using FIT

R01AN1685EU0260 Rev.2.60 Page 59 of 60

July 7, 2014

4. r_bsp_config_reference.h

This header file has settings to provide default options of the board. Macro definitions that are included in this file

and need to be modified according to the custom board are listed in the table below. Change the settings as required.

For example, when the setting in the copied board folder uses the PLL as the system clock while the user system

uses the HOCO, change the clock setting for BSP_CFG_CLOCK_SOURCE from PLL to HOCO.

Also confirm usage conditions for macros not in the table below and modify them as required.

Table 6.1 Macros to be Modified According to the Custom Board

Macro Description

BSP_CFG_CLOCK_SOURCE Selects a crystal on the board and a clock source.

BSP_CFG_XTAL_HZ
Specifies a value according to the crystal on the board (default value: RSK
setting).

BSP_CFG_PLL_DIV
When using the PLL:

Specifies an available setting value using the crystal on the board.

BSP_CFG_PLL_MUL
When using the PLL:

Specifies an available setting value using the crystal on the board.

BSP_CFG_ICK_DIV Specifies an available setting value using the crystal on the board.

BSP_CFG_PCKB_DIV Specifies an available setting value using the crystal on the board.

BSP_CFG_PCKD_DIV Specifies an available setting value using the crystal on the board.

BSP_CFG_FCK_DIV Specifies an available setting value using the crystal on the board.

Step 6. Copy and Rename the r_bsp_config_reference.h File (Mandatory)

After step 5, copy the r_bsp_config_reference.h file, paste it in the r_config folder, and rename the copied file to

"r_bsp_config.h".

Step 7. Modify the platform.h File (Mandatory)

This header file needs to be modified to specify the r_bsp.h file in the newly created folder for the custom board.

Follow the steps below for the modification.

1) Uncomment the line under the comment "/* User Board - Define your own board here. */ ".

2) Change the folder name after "board/" to the folder name for the custom board.

Before modification:

After modification:

RX Family Board Support Package Module Using FIT

R01AN1685EU0260 Rev.2.60 Page 60 of 60

July 7, 2014

Website and Support

Renesas Electronics Website

http://www.renesas.com/

Inquiries

http://www.renesas.com/inquiry

All trademarks and registered trademarks are the property of their respective owners.

http://www.renesas.com/
http://www.renesas.com/inquiry

A-1

Revision Record

Rev.

Date

Description

Page Summary

2.30 Nov 15, 2013 — First Release.

2.40 Feb 18, 2014 — Added support for RX21A, RX220, RX110. Expanded ‘MCU

Information’ subsection.

2.50 Mar 13, 2014 — Added support for RX64M.

2.60 July 15, 2014 — Added section for Creating a BSP Module for a Custom Board.

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the

products covered by this document, refer to the relevant sections of the document as well as any technical updates that

have been issued for the products.

1. Handling of Unused Pins

Handle unused pins in accordance with the directions given under Handling of Unused Pins in the

manual.

 The input pins of CMOS products are generally in the high-impedance state. In operation with an

unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an

associated shoot-through current flows internally, and malfunctions occur due to the false

recognition of the pin state as an input signal become possible. Unused pins should be handled as

described under Handling of Unused Pins in the manual.

2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

 The states of internal circuits in the LSI are indeterminate and the states of register settings and

pins are undefined at the moment when power is supplied.

In a finished product where the reset signal is applied to the external reset pin, the states of pins

are not guaranteed from the moment when power is supplied until the reset process is completed.

In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function

are not guaranteed from the moment when power is supplied until the power reaches the level at

which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

 The reserved addresses are provided for the possible future expansion of functions. Do not access

these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.

When switching the clock signal during program execution, wait until the target clock signal has

stabilized.

 When the clock signal is generated with an external resonator (or from an external oscillator)

during a reset, ensure that the reset line is only released after full stabilization of the clock signal.

Moreover, when switching to a clock signal produced with an external resonator (or by an external

oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products

Before changing from one product to another, i.e. to a product with a different part number, confirm

that the change will not lead to problems.

 The characteristics of an MPU or MCU in the same group but having a different part number may

differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect

the ranges of electrical characteristics, such as characteristic values, operating margins, immunity

to noise, and amount of radiated noise. When changing to a product with a different part number,

implement a system-evaluation test for the given product.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the

use of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or

technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or

third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on

the product's quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical

implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it

in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses

incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the

use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and

malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the

possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,

please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics

products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or

regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the

development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and

regulations and follow the procedures required by such laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the

contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics

products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220

Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999

Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022/9044

Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics Korea Co., Ltd.
12F., 234 Teheran-ro, Gangnam-Ku, Seoul, 135-920, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2014 Renesas Electronics Corporation. All rights reserved. �

Colophon 4.0

	1. Overview
	1.1 Terminology
	1.2 File Structure

	2. Features
	2.1 MCU Information
	2.2 Initialization
	2.3 Global Interrupts
	2.4 Interrupt Callbacks
	2.5 Non-Existent Port Pins
	2.6 Clock Setup
	2.7 STDIO & Debug Console
	2.8 Stacks & Heap
	2.9 CPU Mode
	2.10 ID Code
	2.11 Parallel Programmer Protection
	2.12 Endian
	2.13 Option Function Select Registers
	2.14 Board-Specific Defines
	2.15 System Wide Parameter Checking
	2.16 Atomic Locking
	2.17 Register Protection
	2.18 CPU Functions

	3. Configuration
	3.1 Choosing a Platform
	3.2 Platform Configuration
	3.2.1 MCU Product Part Number Information
	3.2.2 Stack & Heap Sizes
	3.2.3 STDIO Enable
	3.2.4 CPU Modes & Boot Modes
	3.2.5 RTOS
	3.2.6 Clock Setup
	3.2.7 Registers in ROM & External Memory Access Protection
	3.2.8 Atomic Locking
	3.2.9 Parameter Checking
	3.2.10 MCU Voltage

	4. API Information
	4.1 Hardware Requirements
	4.2 Hardware Resource Requirements
	4.3 Software Requirements
	4.4 Limitations
	4.5 Supported Toolchains
	4.6 Header Files
	4.7 Integer Types
	4.8 Configuration Overview
	4.9 API Data Structures
	4.9.1 Software Lock
	4.9.2 Interrupt Callback Parameter

	4.10 API Typedefs
	4.10.1 Register Protection
	4.10.2 Hardware Resource Locks
	4.10.3 Interrupt Error Codes
	4.10.4 Interrupt Control Commands
	4.10.5 Interrupt Callback Function
	4.10.6 Interrupt Sources
	4.10.7 Group Interrupts
	4.10.8 Software Configurable Interrupts

	4.11 Return Values
	4.12 Adding Driver to Your Project

	5. API Functions
	5.1 Summary
	5.2 R_BSP_GetVersion
	5.3 R_BSP_InterruptsDisable
	5.4 R_BSP_InterruptsEnable
	5.5 R_BSP_CpuInterruptLevelRead
	5.6 R_BSP_CpuInterruptLevelWrite
	5.7 R_BSP_RegisterProtectEnable
	5.8 R_BSP_RegisterProtectDisable
	5.9 R_BSP_SoftwareLock
	5.10 R_BSP_SoftwareUnlock
	5.11 R_BSP_HardwareLock
	5.12 R_BSP_HardwareUnlock
	5.13 R_BSP_InterruptWrite
	5.14 R_BSP_InterruptRead
	5.15 R_BSP_SoftwareDelay

	6. Project Setup
	6.1 Creating Empty Project
	6.2 Adding r_bsp with e2studio FIT Plug-in
	6.3 Adding r_bsp Manually
	6.4 Creating a BSP Module for a Custom Board
	Step 1. Create a New Project (Mandatory)
	Step 2. Add the BSP Module (Mandatory)
	Step 3. Create a Folder for the Custom Board
	Step 4. Store Necessary Files (Mandatory)
	Step 5. Modify Files Suited to the Custom Board (Mandatory)
	Step 6. Copy and Rename the r_bsp_config_reference.h File (Mandatory)
	Step 7. Modify the platform.h File (Mandatory)

	Website and Support
	Revision Record
	General Precautions in the Handling of MPU/MCU Products

