
 APPLICATION NOTE

R01AN1691EJ0130 Rev. 1.30 Page 1 of 47
Aug. 25, 2014

RX Family
Simple I2C Module Using Firmware Integration Technology

Introduction
This application note describes the simple I2C module using firmware integration technology (FIT) for communications
between devices using the serial communications interface (SCI).

Target Device
This API supports the following device.

 RX111 Group

 RX110 Group

 RX113 Group

 RX64M Group

When using this application note with other Renesas MCUs, careful evaluation is recommended after making
modifications to comply with the alternate MCU.

Related Documents
 Firmware Integration Technology User's Manual (R01AN1833EU)

 Board Support Package Module Using Firmware Integration Technology (R01AN1685EU)

 Adding Firmware Integration Technology Modules to Projects (R01AN1723EU)

 Adding Firmware Integration Technology Modules to CubeSuite+ Projects (R01AN1826EJ)

R01AN1691EJ0130
Rev. 1.30

Aug. 25, 2014

RX Family Simple I2C Module Using Firmware Integration Technology

R01AN1691EJ0130 Rev. 1.30 Page 2 of 47
Aug. 25, 2014

Contents

1. Overview ... 3
1.1 SCI Simple I2C Mode FIT Module .. 3
1.2 Outline of the API ... 3
1.3 Overview of SCI Simple I2C Mode FIT Module .. 4

1.3.1 Specifications of SCI Simple I2C Mode FIT Module ... 4
1.3.2 Master Transmission .. 5
1.3.3 Master Reception .. 8
1.3.4 State Transition ... 11
1.3.5 Flags when Transitioning States .. 12

2. API Information ... 13
2.1 Hardware Requirements .. 13
2.2 Software Requirements ... 13
2.3 Supported Toolchains .. 13
2.4 Header Files ... 13
2.5 Integer Types ... 13
2.6 Configuration Overview .. 14
2.7 Parameters... 17
2.8 Return Values .. 17
2.9 Adding the FIT Module to Your Project .. 18

3. API Functions ... 19
3.1 R_SCI_IIC_Open() ... 19
3.2 R_SCI_IIC_MasterSend() .. 21
3.3 R_SCI_IIC_MasterReceive() ... 26
3.4 R_SCI_IIC_Close() .. 29
3.5 R_SCI_IIC_GetStatus() ... 31
3.6 R_SCI_IIC_Control() .. 33
3.7 R_SCI_IIC_GetVersion() ... 35

4. Appendices ... 36
4.1 Communication Method ... 36

4.1.1 States for API Operation ... 36
4.1.2 Events During API Operation ... 36
4.1.3 Protocol State Transitions... 37
4.1.4 Protocol State Transition Table .. 41
4.1.5 Functions Used on Protocol State Transitions ... 41
4.1.6 Flag States on State Transitions .. 42

4.2 Interrupt Request Generation Timing .. 44
4.2.1 Master Transmission .. 44
4.2.2 Master Reception .. 45
4.2.3 Master Composite ... 46

5. Provided Modules ... 47

6. Reference Documents .. 47

RX Family Simple I2C Module Using Firmware Integration Technology

R01AN1691EJ0130 Rev. 1.30 Page 3 of 47
Aug. 25, 2014

1. Overview
The simple I2C module using firmware integration technology (SCI simple I2C mode FIT module (1)) provides a method
to transmit and receive data between the master and slave devices using the SCI. The SCI simple I2C mode is in
compliance with single master mode of the NXP I2C-bus (Inter-IC-Bus) interface.

Note:
1. When the description says “module” in this document, it indicates the SCI simple I2C mode FIT

module.

Features supported by this module are as follows:

- Single master mode (slave transmission or slave reception is not supported).

- Circuit to generate waveforms for conditions.

- Communication mode can be standard or fast mode and the maximum communication rate is 384 kbps.

Limitations

- This module cannot be used with the DTC.

- This module does not support transmission with 10-bit address.

- Multiple interrupts are not supported.

- API function calls except for the R_SCI_IIC_GetStatus function are disabled in the callback function.

- The I flag must be set to 1 to use interrupts.

1.1 SCI Simple I2C Mode FIT Module
This module is implemented in a project and used as the API. Refer to 2.9 Adding the FIT Module to Your Project for
details on implementing the module to the project.

1.2 Outline of the API
Table 1.1 lists the API Functions and Table 1.2 lists the Required Memory Size.

Table 1.1 API Functions

Item Contents
R_SCI_IIC_Open() Initializes the SCI to prepare for this module.

R_SCI_IIC_MasterSend()
Starts master transmission.
Changes the transmit pattern according to the parameters.
Operates batched processing until stop condition generation.

R_SCI_IIC_MasterReceive()
Starts master reception.
Changes the receive pattern according to the parameters.
Operates batched processing until stop condition generation.

R_SCI_IIC_Close() Releases channels associated with the SCI.
R_SCI_IIC_GetStatus() Used to verify the SCI state.

R_SCI_IIC_Control() Performs processing such as an internal initialization mainly when a
communication error occurs.

R_SCI_IIC_GetVersion() Returns the module version.

RX Family Simple I2C Module Using Firmware Integration Technology

R01AN1691EJ0130 Rev. 1.30 Page 4 of 47
Aug. 25, 2014

Table 1.2 Required Memory Size

Memory Used Size Remarks
ROM 4518 bytes
RAM 41 bytes
Maximum user stack usage 148 bytes
Maximum interrupt stack usage 152 bytes
* The table lists values when the default values are set to the compile options and the RX111 Group is used.

The required memory size varies depending on the C compiler version and compile options.

1.3 Overview of SCI Simple I2C Mode FIT Module
1.3.1 Specifications of SCI Simple I2C Mode FIT Module
1. This module supports master transmission and reception.

- There are four transmit patterns that can be used for master transmission. Refer to 1.3.2 for details on master
transmission.

- Master reception and master composite can be selected for master reception. Refer to 1.3.3 for details on master
reception.

2. An interrupt occurs when any of the following operations completes: start condition generation, slave address
transmission, data reception, or stop condition generation. In the simple I2C interrupt handling, the communication
control function is called and the operation is continued.

3. The module supports multiple channels. When the device used has multiple channels, simultaneous communication
is available using multiple channels.

4. Multiple slave devices on the same channel bus can be controlled. However, while communication is in progress
(the period from start condition generation to stop condition generation), communication with other devices is not
available. Figure 1.1 shows an Example of Controlling Multiple Slave Devices.

Device A
ST generated

¡

Time

When slave devices A and B are connected to channel 0.

ST: Start condition, SP: Stop condition

Channel 0 bus Slave device A
communicating

Slave device B
communicating

Device A
SP generated

Device A
ST not generated

¡ ×

×

Device B
ST not generated

Device B
ST generated

Device B
SP generated

¡ ¡

Multiple devices cannot
communicate on the same
channel bus at the same time.

Figure 1.1 Example of Controlling Multiple Slave Devices

RX Family Simple I2C Module Using Firmware Integration Technology

R01AN1691EJ0130 Rev. 1.30 Page 5 of 47
Aug. 25, 2014

1.3.2 Master Transmission
Data is transmitted from the master device (master (RX MCU)) to the slave device (slave).

With this module, four patterns of waveforms can be generated for master transmission. A pattern is selected according
to the arguments set in the parameters which are members of the I2C communication information structure. Refer to 2.7
Parameters for details on the I2C communication information structure. Figure 1.2 to Figure 1.5 show the transmit
patterns.

(1) Pattern 1

Data is transmitted from the master (RX MCU) to the slave.

A start condition is generated and then the slave address is transmitted. The eighth bit specifies the transfer
direction. This bit is set to 0 (write) when transmitting. Then the first data is transmitted. The first data is used when
there is data to be transmitted in advance before performing the data transmission. For example, if the slave is an
EEPROM, the EEPROM internal address can be transmitted. Next the second data is transmitted. The second data
is the data to be written to the slave. When a data transmission has started and all data transmissions have
completed, a stop condition is generated, and the bus is released.

SSCLn

SSDAn

Start Stop

n: Channel number
ST: Start condition generation
SP: Stop condition generation
ACK: Acknowledge: 0
* A signal with an underline indicates data transmission from the slave to the master.

ST 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 8 9 7 1 2 8 9 7 SP

Slave address
(8th bit: 0)

1st data 1st data (i) 2nd data 2nd data (i)ACK ACKACKACKACK

Figure 1.2 Signals for Pattern 1 of Master Transmission

RX Family Simple I2C Module Using Firmware Integration Technology

R01AN1691EJ0130 Rev. 1.30 Page 6 of 47
Aug. 25, 2014

(2) Pattern 2

Data is transmitted from the master (RX MCU) to the slave. However, when the first data is not set, transmission
for the first data is not performed.

Operations from start condition generation through to slave address transmission are the same as the operations for
pattern 1. Then the second data is transmitted without transmitting the first data. When all data transmissions have
completed, a stop condition is generated and the bus is released.

SSCLn

SSDAn

ST 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 8 9 7 SP

Start StopSlave address
(8th bit: 0)

2nd data 2nd data (i)

n: Channel number
ST: Start condition generation
SP: Stop condition generation
ACK: Acknowledge: 0
* A signal with an underline indicates data transmission from the slave to the master.

ACKACKACK

Figure 1.3 Signals for Pattern 2 of Master Transmission

(3) Pattern 3

Operations from start condition generation through to slave address transmission are the same as the operations for
pattern 1. When neither the first data nor the second data are set, data transmission is not performed, then a stop
condition is generated, and the bus is released.

This pattern is useful for detecting connected devices or when performing acknowledge polling to verify the
EEPROM rewriting state.

SSCLn

SSDAn

ST 1 2 3 4 5 6 7 8 9 SP

Start StopSlave address
(8th bit: 0)

ACK

n: Channel number
ST: Start condition generation
SP: Stop condition generation
ACK: Acknowledge: 0
* A signal with an underline indicates data
 transmission from the slave to the master.

Figure 1.4 Signals for Pattern 3 of Master Transmission

RX Family Simple I2C Module Using Firmware Integration Technology

R01AN1691EJ0130 Rev. 1.30 Page 7 of 47
Aug. 25, 2014

(4) Pattern 4

After a start condition is generated, when the slave address, first data, and second data are not set, slave address
transmission and data transmission are not performed. Then a stop condition is generated and the bus is released.

This pattern is useful for just releasing the bus.

ST

SSCLn

SSDAn

Start Stop

SP n: Channel number
ST: Start condition generation
SP: Stop condition generation

Figure 1.5 Signals for Pattern 4 of Master Transmission

Figure 1.6 shows the procedure of master transmission. The callback function is called after generating a stop condition.
Specify the function name in the CallBackFunc of the I2C communication information structure member.

[5] The callback function is called
 when a stop condition is generated.

Master transmission

Specify the parameter depending on
the channel used

SCI initialization
R_SCI_IIC_Open()

Master transmission
R_SCI_IIC_MasterSend()

End

[4] Starts transmission with the specified pattern.

[1] Sets the channel used.

[2] Initializes the SCI channel set in [1].

Specify the communication
information structure [3] The arguments vary depending on the transmit pattern.

Release the channel
R_SCI_IIC_Close()

Callback function

Yes

No [6] Determines if all communications completed.

[7] After the communication has completed, the bus
 used for the selected channel is released.

Has the communication
completed?

Figure 1.6 Example of Master Transmission

RX Family Simple I2C Module Using Firmware Integration Technology

R01AN1691EJ0130 Rev. 1.30 Page 8 of 47
Aug. 25, 2014

1.3.3 Master Reception
The master (RX MCU) receives data from the slave. This module supports master reception and master composite. The
receive pattern is selected according to the arguments set in the parameters which are members of the I2C
communication information structure. Refer to 2.7 Parameters for details on the I2C communication information
structure. Figure 1.7 and Figure 1.8 show receive patterns.

(1) Master Reception

The master (RX MCU) receives data from the slave.

A start condition is generated and then the slave address is transmitted. The eighth bit specifies the transfer
direction. This bit is set to 1 (read) when receiving. Then data reception starts. An ACK is transmitted each time 1-
byte data is received except the last data. A NACK is transmitted when the last data is received to notify the slave
that all data receptions have completed. Then a stop condition is generated and the bus is released.

SSCLn

SSDAn

n: Channel number
ST: Start condition generation NACK: Acknowledge: 1
SP: Stop condition generation ACK: Acknowledge: 0
* A signal with an underline indicates data transmission from the slave to the master.

ST 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 8 9 7 SP

Start StopSlave address
(8th bit: 1)

ACK NACK2nd data (i) 2nd data ACK

Figure 1.7 Signals for Master Reception

RX Family Simple I2C Module Using Firmware Integration Technology

R01AN1691EJ0130 Rev. 1.30 Page 9 of 47
Aug. 25, 2014

(2) Master Composite

The master (RX MCU) transmits data to the slave (master transmission). After the transmission completes, a restart
condition is generated, the transfer direction is changed to 1 (read), and the master receives data from the slave
(master reception).

A start condition is generated and then the slave address is transmitted. The eighth bit is the bit specifies the
transfer direction. This bit is set to 0 (write) when transmitting. Then the first data is transmitted. When the data
transmission completes, a restart condition is generated and the slave address is transmitted. Then the eighth bit is
set to 1 (read) and a data reception starts. An ACK is transmitted each time 1-byte data is received except the last
data. A NACK is transmitted when the last data is received to notify the slave that all data receptions have
completed. Then a stop condition is generated and the bus is released.

SSCLn

SSDAn

ST 1 2 3 4 5 6 7 8 9 1 2 8 9 7 1 2 8 9 7 SPRST 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

Start Stop

n: Channel number
ST: Start condition generation NACK: Acknowledge: 1
SP: Stop condition generation ACK: Acknowledge: 0
RST: Restart condition generation
* A signal with an underline indicates data transmission from the slave to the master.

Slave address
(8th bit: 0)

1st data (i) Slave address
(8th bit: 1)

ACK NACKRestart 2nd data (i) 2nd data ACKACKACK

Figure 1.8 Signals for Master Composite

RX Family Simple I2C Module Using Firmware Integration Technology

R01AN1691EJ0130 Rev. 1.30 Page 10 of 47
Aug. 25, 2014

Figure 1.9 shows the procedure of master reception. The callback function is called after generating a stop condition.
Specify the function name in the CallBackFunc of the I2C communication information structure member.

[5] The callback function is called
 when a stop condition is generated.

Master reception

Specify the parameter depending on
the channel used

SCI initialization
R_SCI_IIC_Open()

Master reception
R_SCI_IIC_MasterRecive()

End

[1] Sets the channel used.

[2] Initializes the SCI channel set in [1].

Specify the communication
information structure [3] The arguments differ between master reception and master composite.

Release the channel
R_SCI_IIC_Close()

Callback function

Yes

No [6] Determines whether all communications completed.

[7] After the communication has completed, the bus
 used for the selected channel is released.

Has the communication
completed?

[4] Starts reception for the specified receive pattern.

Figure 1.9 Example of Master Reception

RX Family Simple I2C Module Using Firmware Integration Technology

R01AN1691EJ0130 Rev. 1.30 Page 11 of 47
Aug. 25, 2014

1.3.4 State Transition
States entered in this module are uninitialized state, idle state, and communicating state.

Figure 1.10 shows the State Transition Diagram.

Notation conventions

Uninitialized state
[SCI_IIC_NO_INIT]

State

Idle state
[SCI_IIC_IDLE]

[SCI_IIC_FINISH]
[SCI_IIC_NACK]

Communicating
[SCI_IIC_COMMUNICATION]

Event[condition]/Action on the event

R_SCI_IIC_Close() called/
I2C driver reset processing

R_SCI_IIC_Open() called
[Bus released]/Initialization

R_SCI_IIC_MasterSend() called
[Bus released]/Starts master transmission
R_SCI_IIC_MasterRecieve() called
[Bus released]/Starts master reception

[Communicating]/
- Monitors the communication state
- Processing for I2C communication

R_SCI_IIC_Open() called
 [Error occurred]/Set the error state when returning
R_SCI_IIC_MasterSend() called
 [Error occurred]/Set the error state when returning
R_SCI_IIC_MasterRecieve() called
 [Error occurred]/Set the error state when returning
R_SCI_IIC_GetStatus() called
 [Error occurred]/Set the error state when returning
R_SCI_IIC_Control() called
 [Error occurred]/Set the error state when returning

[Normal end or NACK detected]
/Completes the communication

l Reset released

Figure 1.10 State Transition Diagram

RX Family Simple I2C Module Using Firmware Integration Technology

R01AN1691EJ0130 Rev. 1.30 Page 12 of 47
Aug. 25, 2014

1.3.5 Flags when Transitioning States
dev_sts is the device state flag and is one of the I2C communication information structure members. The flag stores the
communication state of the device. Using this flag enables controlling multiple slaves on the same channel.

Table 1.3 lists the Device State Flags when Transitioning States.

Table 1.3 Device State Flags when Transitioning States

State Device State Flag (dev_sts)
Uninitialized state SCI_IIC_NO_INIT

Idle states
SCI_IIC_IDLE
SCI_IIC_FINISH
SCI_IIC_NACK

Communicating (master transmission) SCI_IIC_COMMUNICATION
Communicating (master reception) SCI_IIC_COMMUNICATION
Communicating (master composite) SCI_IIC_COMMUNICATION
Error SCI_IIC_ERROR

RX Family Simple I2C Module Using Firmware Integration Technology

R01AN1691EJ0130 Rev. 1.30 Page 13 of 47
Aug. 25, 2014

2. API Information
This driver API adheres to the Renesas API naming standards.

2.1 Hardware Requirements
This driver requires your MCU supports the following feature:

- SCI

2.2 Software Requirements
This driver is dependent upon the following packages:

- r_bsp

2.3 Supported Toolchains
This driver is tested and works with the following toolchain:

- Renesas RX Toolchain v.2.01

2.4 Header Files
All API calls and their supporting interface definitions are located in r_sci_iic_rx_if.h.

2.5 Integer Types
This project uses ANSI C99. These types are defined in stdint.h.

RX Family Simple I2C Module Using Firmware Integration Technology

R01AN1691EJ0130 Rev. 1.30 Page 14 of 47
Aug. 25, 2014

2.6 Configuration Overview
The configuration options in this module are specified in r_sci_iic_rx_config.h. The option names and setting values are
listed in the table below.

Configuration options in r_sci_iic_rx_config.h (1/3)

#define
SCI_IIC_CFG_PARAM_CHECKING_ENABLE
- Default value = 1

Selectable whether to include parameter checking in the code.
- When this is set to 0, parameter checking is omitted.
- When this is set to 1, parameter checking is included.

#define SCI_IIC_CFG_CHi_INCLUDED
i = 0 to 9, 12
- When i = 1, the default value = 1
- When i = 0, 2 to 9, or 12, the
default value = 0

Selectable whether to use available channels.
- When this is set to 0, relevant processes for the channel are omitted

from the code.
- When this is set to 1, relevant processes for the channel are

included in the code.
#define SCI_IIC_CFG_CHi_BITRATE_BPS
i = 0 to 9, 12
- Default value = 384000 for all

Specifies the bit rate. Specify a value less than or equal to 384000
(384 kbit/sec.).

#define
SCI_IIC_CFG_CHi_INT_PRIORITY
i = 0 to 9, 12
- Default value = 2 for all

Specifies interrupt priority levels for condition generation, receive-
data-full, transmit-data-empty, and transmit-end interrupts.
Specify the level between 1 and 15.

#define
SCI_IIC_CFG_CHi_DIGITAL_FILTER
i = 0 to 9, 12
- Default value = 1 for all

Selectable whether to use the noise cancellation function for the
SSCL and SSDA input signals.
- When this is set to 0, the noise cancellation function is disabled.
- When this is set to 1, the noise cancellation function is enabled.

#define
SCI_IIC_CFG_CHi_FILTER_CLOCK
i = 0 to 9, 12
- Default value = 1 for all

Select the sampling clock used for digital noise filter.
- When this is set to 1, the clock divided by 1 is used.
- When this is set to 2, the clock divided by 2 is used.
- When this is set to 3, the clock divided by 4 is used.
- When this is set to 4, the clock divided by 8 is used.

#define
SCI_IIC_CFG_CHi_SSDA_DELAY_SELECT
i = 0 to 9, 12
- Default value = 1 for all

Select the delay time of the SSDA pin output to the falling on the
SSCL pin.
Specify the delay between 1 and 31.

RX Family Simple I2C Module Using Firmware Integration Technology

R01AN1691EJ0130 Rev. 1.30 Page 15 of 47
Aug. 25, 2014

Configuration options in r_sci_iic_rx_config.h (2/3)

#define
SCI_IIC_CFG_BUS_CHECK_COUNTER
i = 0 to 9, 12
- Default value = 1000

Specifies the timeout counter (number of times to perform bus
checking) when the simple I2C API function performs bus checking.
Specify a value less than or equal to 0xFFFFFFFF.
The bus checking is performed after generating each condition using
the simple I2C control function (R_SCI_IIC_Control function).
With the bus checking, the timeout counter is decremented after
generating each condition. When the counter reaches 0, the API
determines that a timeout has occurred and returns an error (Busy) as
the return value.

* The timeout counter is used for the bus not to be locked by the bus

lock or others. Therefore specify the value greater than or equal to
the time for that the other device holds the SCL pin low.

Setting time for the timeout (ns) ≈ (
1

ICLK (Hz)) × counter value × 10

#define
SCI_IIC_CFG_PORT_SETTING_PROCESSING
- Default value = 1

Specifies whether to include processing for port setting (*) in the code.

* Processing for port setting is the setting to use ports selected by
SCI_IIC_CFG_CHi_SSCL_GP, SCI_IIC_CFG_CHi_SSCL_PIN,
SCI_IIC_CFG_CHi_SSDA_GP, and SCI_IIC_CFG_CHi_SSDA_PIN
as pins SSCL and SSDA.

- When this is set to 0, processing for port setting is omitted from the
code.
- When this is set to 1, processing for port setting is included in the
code.

RX Family Simple I2C Module Using Firmware Integration Technology

R01AN1691EJ0130 Rev. 1.30 Page 16 of 47
Aug. 25, 2014

Configuration options in r_sci_iic_rx_config.h (3/3)

#define SCI_IIC_CFG_CHi_SSCL_GP
i = 0 to 9, 12
- When i = 0, the default value = “PORT2_GR”
- When i = 1, the default value = “PORT1_GR”
- When i = 2, the default value = “PORT5_GR”
- When i = 3, the default value = “PORT2_GR”
- When i = 4, the default value = “PORTB_GR”
- When i = 5, the default value = “PORTC_GR”
- When i = 6, the default value = “PORTB_GR”
- When i = 7, the default value = “PORT9_GR”
- When i = 8, the default value = “PORTC_GR”
- When i = 9, the default value = “PORTB_GR”
- When i = 12, the default value = “PORTE_GR”

Selects port groups used as the SSCL pins.
Specify the value from “PORT0_GR” to
“PORTJ_GR”.

#define SCI_IIC_CFG_CHi_SSCL_PIN
i = 0 to 9, 12
- When i = 0, the default value = 1
- When i = 1, the default value = 5
- When i = 2, the default value = 2
- When i = 3, the default value = 5
- When i = 4, the default value = 0
- When i = 5, the default value = 2
- When i = 6, the default value = 0
- When i = 7, the default value = 2
- When i = 8, the default value = 6
- When i = 9, the default value = 6
- When i = 12, the default value = 2

Selects pins used as the SSCL pins.
Specify the value from 0 to 7.

#define SCI_IIC_CFG_CHi_SSDA_GP
i = 0 to 9, 12
- When i = 0, the default value = “PORT2_GR”
- When i = 1, the default value = “PORT1_GR”
- When i = 2, the default value = “PORT5_GR”
- When i = 3, the default value = “PORT2_GR”
- When i = 4, the default value = “PORTB_GR”
- When i = 5, the default value = “PORTC_GR”
- When i = 6, the default value = “PORTB_GR”
- When i = 7, the default value = “PORT9_GR”
- When i = 8, the default value = “PORTC_GR”
- When i = 9, the default value = “PORTB_GR”
- When i = 12, the default value = “PORTE_GR”

Selects port groups used as the SSDA pin.
Specify the value from “PORT0_GR” to
“PORTJ_GR”.

#define SCI_IIC_CFG_CHi_SSDA_PIN
i = 0 to 9, 12
- When i = 0, the default value = 0
- When i = 1, the default value = 6
- When i = 2, the default value = 0
- When i = 3, the default value = 3
- When i = 4, the default value = 1
- When i = 5, the default value = 3
- When i = 6, the default value = 1
- When i = 7, the default value = 0
- When i = 8, the default value = 7
- When i = 9, the default value = 7
- When i = 12, the default value = 1

Selects port groups used as the SSDA pin.
Specify the value from 0 to 7.

RX Family Simple I2C Module Using Firmware Integration Technology

R01AN1691EJ0130 Rev. 1.30 Page 17 of 47
Aug. 25, 2014

2.7 Parameters
This section describes the structure whose members are API parameters. This structure is located in r_sci_iic_rx_if.h as
are the prototype declarations of API functions.

typedef struct
{
 uint8_t rsv2; /* Reserved area */
 uint8_t rsv1; /* Reserved area */
 sci_iic_ch_dev_status_t dev_sts; /* Device state flag */
 uint8_t ch_no; /* Channel number for the device used */
 sci_iic_callback callbackfunc; /* Callback function */
 uint32_t cnt2nd;/* Second data counter (number of bytes) */
 uint32_t cnt1st;/* First data counter (number of bytes) */
 uint8_t * p_data2nd; /* Pointer to the buffer to store the second data */
 uint8_t * p_data1st; /* Pointer to the buffer to store the first data */
 uint8_t * p_slv_adr; /* Pointer to the buffer to store the slave address */
} sci_iic_info_t;

2.8 Return Values
This section describes return values of API functions. This enumeration is located in r_sci_iic_rx_if.h as are the
prototype declarations of API functions.

typedef enum /* Simple I2C-bus API state codes */
{
SCI_IIC_SUCCESS, /* Processing completed successfully */
SCI_IIC_ERR_LOCK_FUNC, /* Multiple calls occurred on the same channel. */
SCI_IIC_ERR_INVALID_CHAN, /* Nonexistent channel */
SCI_IIC_ERR_INVALID_ARG, /* Invalid parameter */
SCI_IIC_ERR_NO_INIT, /* Uninitialized state */
SCI_IIC_ERR_BUS_BUSY, /* Bus is busy. This state occurs with the following cases: */
 /* The initialization function or a start function is */
 /* called during communication. */
 /* A start function or advance function is called while */
 /* another device on the same channel is communicating. */
SCI_IIC_ERR_OTHER /* Other error */
} sci_iic_return_t;

RX Family Simple I2C Module Using Firmware Integration Technology

R01AN1691EJ0130 Rev. 1.30 Page 18 of 47
Aug. 25, 2014

2.9 Adding the FIT Module to Your Project
The module must be added to an existing e2Studio project.

It is best to use the e2Studio FIT plug-in to add the FIT module to your project as that will automatically update the
include file paths for you. To add the FIT module using the plug-in, refer to “2. Adding FIT Modules to e2 studio
Projects Using FIT Plug-In” in the application note “Adding Firmware Integration Technology Modules to Projects
(R01AN1723EU)”.

Alternatively, the FIT module can be added manually. To add the FIT module manually, refer to “3. Adding FIT
Modules to e2 studio Projects Manually” in the application note “Adding Firmware Integration Technology Modules to
Projects (R01AN1723EU)”.

When using the FIT module, the BSP FIT module also needs to be added to the project. For details on the BSP FIT
module, refer to the application note “Board Support Package Module Using Firmware Integration Technology
(R01AN1685EU)”.

RX Family Simple I2C Module Using Firmware Integration Technology

R01AN1691EJ0130 Rev. 1.30 Page 19 of 47
Aug. 25, 2014

3. API Functions

3.1 R_SCI_IIC_Open()
This function is required first when using the simple I2C API.

Format
sci_iic_return_t R_SCI_IIC_Open(
 sci_iic_info_t * p_sci_iic_info /* Structure data */
)

Parameters
* p_sci_iic_info

This is the pointer to the I2C communication information structure.
Only the member of the structure used in this function is described here. Refer to 2.7 Parameters for details on the
structure.

For the parameter which has ‘(to be updated)’ in the comment below, the argument for the parameter will be
updated during the API execution.

 sci_iic_ch_dev_status_t dev_sts; /* Device state flag (to be updated) */
 uint8_t ch_no; /* Channel number */

Return Values
SCI_IIC_SUCCESS /* Processing completed successfully */
SCI_IIC_ERR_LOCK_FUNC /* The API is locked by the other task. */
SCI_IIC_ERR_INVALID_CHAN /* Nonexistent channel */
SCI_IIC_ERR_INVALID_ARG /* Invalid parameter */
SCI_IIC_ERR_OTHER /* The event occurred is invalid in the current state. */

Properties
Prototyped in r_sci_iic_rx_if.h.

Description
Performs the initialization to start the simple I2C-bus communication. Sets the SCI channel specified by the parameter.
If the state of the channel is ‘uninitialized (SCI_IIC_NO_INIT)’, the following processes are performed.

- Setting the state flag
- Setting I/O ports
- Allocating I2C output ports
- Cancelling SCI module-stop state
- Initializing variables used by the API
- Initializing the SCI registers used for the simple I2C-bus communication
- Disabling the SCI interrupt

RX Family Simple I2C Module Using Firmware Integration Technology

R01AN1691EJ0130 Rev. 1.30 Page 20 of 47
Aug. 25, 2014

Reentrant
Function is reentrant for different channels.

Example
volatile sci_iic_return_t ret;
sci_iic_info_t siic_info;

siic_info.dev_sts = 0;
siic_info.ch_no = 1;

ret = R_SCI_IIC_Open(&siic_info);

Special Notes
None

RX Family Simple I2C Module Using Firmware Integration Technology

R01AN1691EJ0130 Rev. 1.30 Page 21 of 47
Aug. 25, 2014

3.2 R_SCI_IIC_MasterSend()
This function is used when the master transmission starts.

Format
sci_iic_return_t R_SCI_IIC_MasterSend(

 sci_iic_info_t * p_sci_iic_info /* Structure data */

)

Parameters
* p_sci_iic_info

This is the pointer to the I2C communication information structure. The transmit patterns can be selected from four
patterns by the parameter. Refer to the Special Notes in this section for available settings and the setting values for
each transmit pattern. Also refer to 1.3.2 Master Transmission for details of each pattern.

Only members of the structure used in this function are described here. Refer to 2.7 Parameters for details on the
structure.

When setting the slave address, store it without shifting 1 bit to left.

For the parameter which has ‘(to be updated)’ in the comment below, the argument for the parameter will be
updated during the API execution.

 uint8_t * p_slv_adr; /* Pointer to the buffer to store the slave address */
 uint8_t * p_data1st; /* Pointer to the buffer to store the first data */
 uint8_t * p_data2nd; /* Pointer to the buffer to store the second data */
 sci_iic_ch_dev_status_t dev_sts; /* Device state flag (to be updated) */
 uint32_t cnt1st;/* First data counter (number of bytes)
 (to be updated for only pattern 1) */
 uint32_t cnt2nd;/* Second data counter (number of bytes)
 (to be updated for only pattern 1 and 2) */
 sci_iic_callback callbackfunc; /* Callback function */
 uint8_t ch_no; /* Channel number */

Return Values
SCI_IIC_SUCCESS /* Processing completed successfully */
SCI_IIC_ERR_INVALID_CHAN /* The channel is nonexistent. */
SCI_IIC_ERR_INVALID_ARG /* The parameter is invalid. */
SCI_IIC _ERR_NO_INIT /* Uninitialized state */
SCI_IIC _ERR_BUS_BUSY /* The bus state is busy. */
SCI_IIC_ERR_OTHER /* The event occurred is invalid in the current state. */

Properties
Prototyped in r_sci_iic_rx_if.h.

RX Family Simple I2C Module Using Firmware Integration Technology

R01AN1691EJ0130 Rev. 1.30 Page 22 of 47
Aug. 25, 2014

Description
Starts the simple I2C-bus master transmission. The transmission is performed with the SCI channel and transmit pattern
specified by parameters. If the state of the channel is ‘idle (SCI_IIC_IDEL)’, the following processes are performed.

- Setting the state flag
- Initializing variables used by the API
- Enabling the SCI interrupts
- Releasing the I2C reset
- Allocating I2C output ports
- Generating a start condition

Reentrant
Function is reentrant for different channels.

Example

- Case1: Transmit pattern 1

#include <stddef.h> // NULL definition
#include "platform.h"
#include "r_sci_iic_rx_if.h"

void main(void);
void Callback_ch1(void);

void main(void)
{

volatile sci_iic_return_t ret;
sci_iic_info_t siic_info;

uint8_t slave_addr_eeprom[1] = {0x50}; /* Slave address for EEPROM */
uint8_t access_addr1[1] = {0x00}; /* 1st data field */
uint8_t send_data[5] = {0x81,0x82,0x83,0x84,0x85};

/* Sets IIC Information (Send pattern 1) */
siic_info.p_slv_adr = slave_addr_eeprom;
siic_info.p_data1st = access_addr1;
siic_info.p_data2nd = send_data;
siic_info.dev_sts = 0;
siic_info.cnt1st = 1;
siic_info.cnt2nd = 3;
siic_info.callbackfunc = &Callback_ch1;
siic_info.ch_no = 1;

/* SCI open */
ret = R_SCI_IIC_Open(&siic_info);
/* Start Master Send */
ret = R_SCI_IIC_MasterSend(&siic_info);
while(1);

}

RX Family Simple I2C Module Using Firmware Integration Technology

R01AN1691EJ0130 Rev. 1.30 Page 23 of 47
Aug. 25, 2014

void Callback_ch1(void)
{

volatile sci_iic_return_t ret;
sci_iic_mcu_status_t iic_status;
sci_iic_info_t iic_info_ch;

iic_info_ch.ch_no = 1;
ret = R_SCI_IIC_GetStatus(&iic_info_ch, &iic_status);

if (SCI_IIC_SUCCESS != ret)
{
/* Call error processing for the R_SCI_IIC_GetStatus()function*/
}
else
{

if (1 == iic_status.BIT.NACK)
{
/* Processing when a NACK is detected
 by verifying the iic_status flag. */
}

}
}

- Case2: Transmitting data to two slave devices (Slave 1 and slave 2)

continuously.

#include <stddef.h> // NULL definition
#include "platform.h"
#include "r_sci_iic_rx_if.h"

void main(void);
void Callback_ch1(void);

void main(void)
{

volatile sci_iic_return_t ret;
sci_iic_info_t siic_info;

uint8_t slave_addr_eeprom[1] = {0x50}; /* Slave address for EEPROM */
uint8_t slave_addr_m16c[1] = {0x01}; /* Slave address for M16C */
uint8_t write_addr_slave1[1] = {0x01}; /* 1st data field */
uint8_t write_addr_slave2[1] = {0x02}; /* 1st data field */
uint8_t data_area_slave1[5] = {0x81,0x82,0x83,0x84,0x85};
uint8_t data_area_slave2[5] = {0x18,0x28,0x38,0x48,0x58};

RX Family Simple I2C Module Using Firmware Integration Technology

R01AN1691EJ0130 Rev. 1.30 Page 24 of 47
Aug. 25, 2014

/* Sets ‘Slave 1’ Information (Send pattern 1) */
siic_info.p_slv_adr = slave_addr_eeprom;
siic_info.p_data1st = write_addr_slave1;
siic_info.p_data2nd = data_area_slave1;
siic_info.dev_sts = 0;
siic_info.cnt1st = 1;
siic_info.cnt2nd = 3;
siic_info.callbackfunc = &Callback_ch1;
siic_info.ch_no = 1;

/* SCI open */
ret = R_SCI_IIC_Open(&siic_info);
/* Start Master Send */
ret = R_SCI_IIC_MasterSend(&siic_info);

while((SCI_IIC_FINISH != siic_info.dev_sts) &&

(SCI_IIC_NACK != siic_info.dev_sts));

/* Sets ‘Slave 2’ Information (Send pattern 1) */
siic_info.p_slv_adr = slave_addr_m16c;
siic_info.p_data1st = write_addr_slave2;
siic_info.p_data2nd = data_area_slave2;
siic_info.dev_sts = 0;
siic_info.cnt1st = 1;
siic_info.cnt2nd = 3;
siic_info.callbackfunc = &Callback_ch1;
siic_info.ch_no = 1;

/* Start Master Send */
ret = R_SCI_IIC_MasterSend(&siic_info);

while((SCI_IIC_FINISH != siic_info.dev_sts) &&
(SCI_IIC_NACK != siic_info.dev_sts));

while(1);
}
void Callback_ch1(void)
{

volatile sci_iic_return_t ret;
sci_iic_mcu_status_t iic_status;
sci_iic_info_t iic_info_ch;

iic_info_ch.ch_no = 1;
ret = R_SCI_IIC_GetStatus(&iic_info_ch, &iic_status);

if (SCI_IIC_SUCCESS != ret)
{
/* Call error processing for the R_SCI_IIC_GetStatus()function*/
}
else
{

if (1 == iic_status.BIT.NACK)
{

/* Processing when a NACK is detected
 by verifying the iic_status flag. */

 }
}

}

To access multiple slave devices,
rewrite the information structure for
each slave device to be accessed.

RX Family Simple I2C Module Using Firmware Integration Technology

R01AN1691EJ0130 Rev. 1.30 Page 25 of 47
Aug. 25, 2014

Special Notes
The table below lists available settings for each pattern.

Structure
Member

Available Settings for Each Pattern of the Master Transmission
Pattern 1 Pattern 2 Pattern 3 Pattern 4

*p_slv_adr Buffer pointer to the slave address storage FIT_NO_PTR (1)

*p_data1st Buffer pointer to the
first data storage FIT_NO_PTR (1) FIT_NO_PTR (1) FIT_NO_PTR (1)

*p_data2nd Buffer pointer to the second data (transmit
data) storage FIT_NO_PTR (1) FIT_NO_PTR (1)

dev_sts Device state flag

cnt1st 0000 0001h to
FFFF FFFFh (2) 0 0 0

cnt2nd 0000 0001h to FFFF FFFFh (2) 0 0
callbackfunc Specify the function name used
ch_no 00h to FFh
rsv1, rsv2, rsv3 Reserved (value set here has no effect)
Notes:

1. When using pattern 2, 3, or 4, set ‘FIT_NO_PTR’ as the argument of the parameter.
2. Do not set to 0.

RX Family Simple I2C Module Using Firmware Integration Technology

R01AN1691EJ0130 Rev. 1.30 Page 26 of 47
Aug. 25, 2014

3.3 R_SCI_IIC_MasterReceive()
This function is used when the master reception starts.

Format
sci_iic_return_t R_SCI_IIC_MasterRecive(

 sci_iic_info_t * p_sci_iic_info /* Structure data */

)

Parameters
* p_sci_iic_info

This is the pointer to the I2C communication information structure. The receive pattern can be selected from master
reception and master composite. Refer to the Special Notes in this section for available settings and the setting
values for each receive pattern. Also refer to 1.3.3 Master Reception for details of each receive pattern.

Only members of the structure used in this function are described here. Refer to 2.7 Parameters for details on the
structure.

When setting the slave address, store it without shifting 1 bit to left.

For the parameter which has ‘(to be updated)’ in the comment below, the argument for the parameter will be
updated during the API execution.

 uint8_t * p_slv_adr; /* Pointer to the buffer to store the slave address */
 uint8_t * p_data1st; /* Pointer to the buffer to store the first data */
 uint8_t * p_data2nd; /* Pointer to the buffer to store the second data */
 sci_iic_ch_dev_status_t dev_sts; /* Device state flag (to be updated) */
 uint32_t cnt1st;/* First data counter (number of bytes) */
 (to be updated only for master composite) */
 uint32_t cnt2nd;/* Second data counter (number of bytes) (to be updated) */
 sci_iic_callback callbackfunc; /* Callback function */
 uint8_t ch_no; /* Channel number */

Return Values
SCI_IIC_SUCCESS /* Processing completed successfully */
SCI_IIC_ERR_INVALID_CHAN /* The channel is nonexistent. */
SCI_IIC_ERR_INVALID_ARG /* The parameter is invalid. */
SCI_IIC _ERR_NO_INIT /* Uninitialized state */
SCI_IIC _ERR_BUS_BUSY /* The bus state is busy. */
SCI_IIC_ERR_OTHER /* The event occurred is invalid in the current state. */

Properties
Prototyped in r_sci_iic_rx_if.h.

Description
Starts the simple I2C-bus master reception. The reception is performed with the SCI channel and receive pattern
specified by parameters. If the state of the channel is ‘idle (SCI_IIC_IDEL)’, the following processes are performed.

- Setting the state flag
- Initializing variables used by the API
- Enabling the SCI interrupts
- Releasing the I2C reset
- Allocating I2C output ports
- Generating a start condition

RX Family Simple I2C Module Using Firmware Integration Technology

R01AN1691EJ0130 Rev. 1.30 Page 27 of 47
Aug. 25, 2014

Reentrant
Function is reentrant for different channels.

Example
/* Sample: MasterReceive (Conbination mode) */
#include <stddef.h> // NULL definition
#include "platform.h"
#include "r_sci_iic_rx_if.h"

void main(void);
void Callback_ch1(void);

void main(void)
{

volatile sci_iic_return_t ret;
sci_iic_info_t siic_info;

uint8_t slave_addr_eeprom[1] = {0x50}; /* Slave address for EEPROM */
uint8_t access_addr1[1] = {0x00}; /* 1st data field */
uint8_t store_area[5] = {0xFF,0xFF,0xFF,0xFF,0xFF};

/* Sets IIC Information (Ch1) */
siic_info.p_slv_adr = slave_addr_eeprom;
siic_info.p_data1st = access_addr1;
siic_info.p_data2nd = store_area;
siic_info.dev_sts = 0;
siic_info.cnt1st = 1;
siic_info.cnt2nd = 3;
siic_info.callbackfunc = &Callback_ch1;
siic_info.ch_no = 1;

/* SCI open */
ret = R_SCI_IIC_Open(&siic_info);
/* Start Master Receive */
ret = R_SCI_IIC_MasterReceive(&siic_info);
while(1);

}

void Callback_ch1(void)
{

volatile sci_iic_return_t ret;
sci_iic_mcu_status_t iic_status;
sci_iic_info_t iic_info_ch;

iic_info_ch.ch_no = 1;
ret = R_SCI_IIC_GetStatus(&iic_info_ch, &iic_status);

if (SCI_IIC_SUCCESS != ret)
{
/* Call error processing for the R_SCI_IIC_GetStatus()function*/
}

RX Family Simple I2C Module Using Firmware Integration Technology

R01AN1691EJ0130 Rev. 1.30 Page 28 of 47
Aug. 25, 2014

else
{

if (1 == iic_status.BIT.NACK)
{

/* Processing when a NACK is detected
 by verifying the iic_status flag. */

}
}

}

Special Notes
The table below lists available settings for each receive pattern.

Structure
Member

Available Settings for Each Pattern of the Master Reception
Master Reception Master Composite

*p_slv_adr Buffer pointer to the slave address storage
*p_data1st (Value set here has no effect) Buffer pointer to the first data storage
*p_data2nd Buffer pointer to the second data (receive data) storage
dev_sts Device state flag
cnt1st (1) 0 0000 0001h to FFFF FFFFh
cnt2nd (2) 0000 0001h to FFFF FFFFh 0000 0001h to FFFF FFFFh
callbackfunc Specify the function name used
ch_no 00h to FFh
rsv1, rsv2, rsv3 Reserved (value set here has no effect)
Notes:

1. The receive pattern is determined by whether cnt1st is 0 or not.
2. Do not set to 0.

RX Family Simple I2C Module Using Firmware Integration Technology

R01AN1691EJ0130 Rev. 1.30 Page 29 of 47
Aug. 25, 2014

3.4 R_SCI_IIC_Close()
This function is used when completing the simple I2C communication and releasing the SCI used.

Format
sci_iic_return_t R_SCI_IIC_Close(

 sci_iic_info_t * p_sci_iic_info /* Structure data */

)

Parameters
* p_sci_iic_info

This is the pointer to the I2C communication information structure.
Only the member of the structure used in this function is described here. Refer to 2.7 Parameters for details on the
structure.

For the parameter which has ‘(to be updated)’ in the comment below, the argument for the parameter will be
updated during the API execution.

 sci_iic_ch_dev_status_t dev_sts; /* Device state flag (to be updated) */
 uint8_t ch_no; /* Channel number */

Return Values
SCI_IIC_SUCCESS /* Processing completed successfully */
SCI_IIC_ERR_INVALID_CHAN /* The channel is nonexistent. */
SCI_IIC_ERR_INVALID_ARG /* The parameter is invalid. */

Properties
Prototyped in r_sci_iic_rx_if.h.

Description
Configures the settings to complete the simple I2C-bus communication. Disables the SCI channel specified by the
parameter. The following processes are performed in this function.

- Entering the SCI module-stop state
- Releasing I2C output ports
- Disabling the SCI interrupt

To restart the communication, call the R_SCI_IIC_Open() function (initialization function). If the communication is
forcibly terminated, that communication is not guaranteed.

Reentrant
Function is reentrant for different channels.

RX Family Simple I2C Module Using Firmware Integration Technology

R01AN1691EJ0130 Rev. 1.30 Page 30 of 47
Aug. 25, 2014

Example
volatile sci_iic_return_t ret;
sci_iic_info_t siic_info;

siic_info.ch_no = 1;

ret = R_SCI_IIC_Close(&siic_info);

Special Notes
None

RX Family Simple I2C Module Using Firmware Integration Technology

R01AN1691EJ0130 Rev. 1.30 Page 31 of 47
Aug. 25, 2014

3.5 R_SCI_IIC_GetStatus()
This function is used when verifying the state of this module.

Format
sci_iic_return_t R_SCI_IIC_GetStatus(

 sci_iic_info_t * p_sci_iic_info /* Structure data */

 sci_iic_sts_flg_t *p_sci_iic_status /* State of this module */

)

Parameters
* p_sci_iic_info

This is the pointer to the I2C communication information structure.
Only the member of the structure used in this function is described here. Refer to 2.7 Parameters for details on the
structure.

 uint8_t ch_no; /* Channel number */

*p_sci_iic_status
This contains the address to store the I2C state flag. If the argument is ‘FIT_NO_PTR’, the state is not returned.
Use the structure members listed below to specify parameters.

typedef union
{
 uint32_t LONG;
 struct st_sci_iic_status_flag
{

uint32_t rsv :27 /* Reserve bit */
uint32_t SCLI:1; /* SSCL pin level */
uint32_t SDAI:1; /* SSDA pin level */
uint32_t NACK :1; /* NACK detection flag */
uint32_t TRS :1; /* Transmit/receive mode level */
uint32_t BSY :1; /* Bus state flag */

 }BIT;

} sci_iic_mcu_status_t;

Return Values

SCI_IIC_SUCCESS /* Processing completed successfully */
SCI_IIC_ERR_INVALID_CHAN /* The channel is nonexistent. */
SCI_IIC_ERR_INVALID_ARG /* The parameter is invalid. */
SCI_IIC_ERR_OTHER /* The event occurred is invalid in the current state. */

Properties
Prototyped in r_sci_iic_rx_if.h.

Description
Returns the state of this module.
By reading the register, pin level, variable, or others, obtains the state of the SCI channel which specified by the
parameter, and returns the obtained state as 32-bit structure.

RX Family Simple I2C Module Using Firmware Integration Technology

R01AN1691EJ0130 Rev. 1.30 Page 32 of 47
Aug. 25, 2014

Reentrant
Function is reentrant for different channels.

Example
volatile sci_iic_return_t ret;
sci_iic_info_t siic_info;
sci_iic_mcu_status_t iic_status;

siic_info.ch_no = 1

ret = R_SCI_IIC_GetStatus(&siic_info, &status_add);

Special Notes
The following shows the state flag allocation.

b31 to b16
Reserved

Reserved

rsv

Always 0

b15 to b8

Reserved

Reserved

rsv

Always 0

b7 to b5 b4 b3 b2 b1 b0

Reserved Pin level Event
 detection Mode Bus state

Reserved SSCL pin
level

SSDA pin
level

NACK
detection

Send/
receive
mode

Bus
busy/ready

rsv SCLI SDAI NACK TRS BSY

Always 0 0: Low level
1: High level

0: Not
detected

1: Detected

0: Receive
1: Transmit

0: Idle
1: Busy

RX Family Simple I2C Module Using Firmware Integration Technology

R01AN1691EJ0130 Rev. 1.30 Page 33 of 47
Aug. 25, 2014

3.6 R_SCI_IIC_Control()
This function is mainly used when a communication error occurs.

It outputs conditions, Hi-Z from the SSDA pin, and one-shot of the SSCL clock. Also it resets the settings of this
module.

Format
sci_iic_return_t R_SCI_IIC_Control(
 r_sci_iic_info_t * p_sci_iic_info /* Structure data */
 sci_iic_ctrl_ptn_t ctrl_ptn /* Output pattern */
);

Parameters
* p_sci_iic_info

This is the pointer to the I2C communication information structure.
Only the member of the structure used in this function is described here. Refer to 2.7 Parameters for details on the
structure.

For the parameter which has ‘(to be updated)’ in the comment below, the argument for the parameter will be
updated during the API execution.

 sci_iic_ch_dev_status_t dev_sts; /* Device state flag (to be updated) */
 uint8_t ch_no; /* Channel number */

ctrl_ptn_t
Specifies the output pattern. When selecting multiple options, specify them with ‘|’.

The following options can be selected simultaneously:

- The following three options can be specified simultaneously. Then they will be processed in the order listed.

- SCI_IIC_GEN_START_CON
- SCI_IIC_GEN_RESTART_CON
- SCI_IIC_GEN_STOP_CON

- The following two options can be specified simultaneously.

- SCI_IIC_GEN_SDA_HI_Z
- SCI_IIC_GEN_SSCL_ONESHOT

typedef uint8_t sci_iic_ctrl_ptn_t;
#define SCI_IIC_GEN_START_CON (sci_iic_ctrl_ptn_t)(0x01)

 /* Start condition generation */
#define SCI_IIC_GEN_STOP_CON (sci_iic_ctrl_ptn_t)(0x02)
 /* Stop condition generation */
#define SCI_IIC_GEN_RESTART_CON (sci_iic_ctrl_ptn_t)(0x04)
 /* Restart condition generation */
#define SCI_IIC_GEN_SSDA_HI_Z (sci_iic_ctrl_ptn_t)(0x08)
 /* Hi-Z output from the SSDA pin */
#define SCI_IIC_GEN_SSCL_ONESHOT (sci_iic_ctrl_ptn_t)(0x10)
 /* SSCL clock one-shot output */
#define SCI_IIC_GEN_RESET (sci_iic_ctrl_ptn_t)(0x20)
 /* Simple I2C mode reset */

RX Family Simple I2C Module Using Firmware Integration Technology

R01AN1691EJ0130 Rev. 1.30 Page 34 of 47
Aug. 25, 2014

Return Values
SCI_IIC_SUCCESS /* Processing completed successfully */
SCI_IIC_ERR_INVALID_CHAN /* The channel is nonexistent. */
SCI_IIC_ERR_INVALID_ARG /* The parameter is invalid. */
SCI_IIC _ERR_BUS_BUSY /* The bus state is busy. */
SCI_IIC_ERR_OTHER /* The event occurred is invalid in the current state. */

Properties
Prototyped in r_sci_iic_rx_if.h.

Description
Outputs control signals of the simple I2C mode. Outputs conditions specified by the argument, Hi-Z from the SSDA pin,
and one-shot of the SSCL clock. Also resets the simple I2C mode settings.

Reentrant
Function is reentrant for different channels.

Example
volatile sci_iic_return_t ret;
sci_iic_info_t siic_info;

siic_info.ch_no = 1;

/* Output an extra SSCL clock cycle after changes the SSDA pin in a high-
impedance state */
ret = R_SCI_IIC_Control(&siic_info, SCI_IIC_GEN_SSDA_HI_Z |
SCI_IIC_SSCL_ONESHOT);

Special Notes
None

RX Family Simple I2C Module Using Firmware Integration Technology

R01AN1691EJ0130 Rev. 1.30 Page 35 of 47
Aug. 25, 2014

3.7 R_SCI_IIC_GetVersion()
This function returns the API version.

Format
uint32_t R_SCI_IIC_GetVersion(void)

Parameters
None

Return Values
Version number

Properties
Prototyped in r_sci_iic_rx_if.h.

Description
Returns the API version number.

Reentrant
Function is reentrant for different channels.

Example
uint32_t version;

version = R_SCI_IIC_GetVersion();

Special Notes
This function is inlined using ‘#pragma inline’.

RX Family Simple I2C Module Using Firmware Integration Technology

R01AN1691EJ0130 Rev. 1.30 Page 36 of 47
Aug. 25, 2014

4. Appendices

4.1 Communication Method
This API controls each processing such as start condition generation, slave address transmission, and others as a single
protocol, and performs communication by combining these protocols.

4.1.1 States for API Operation
Table 4.1 lists the States Used for Protocol Control.

Table 4.1 States Used for Protocol Control (enum sci_iic_api_status_t)

No. Constant Name Description
STS0 SCI_IIC_STS_NO_INIT Uninitialized state
STS1 SCI_IIC_STS_IDLE Idle state
STS2 SCI_IIC_STS_ST_COND_WAIT Wait state for a start condition to be generated

STS3 SCI_IIC_STS_SEND_SLVADR_W_WAIT Wait state for the slave address [write] transmission to
complete

STS4 SCI_IIC_STS_SEND_SLVADR_R_WAIT Wait state for the slave address [read] transmission to
complete

STS5 SCI_IIC_STS_SEND_DATA_WAIT Wait state for the data transmission to complete
STS6 SCI_IIC_STS_RECEIVE_DATA_WAIT Wait state for the data reception to complete
STS7 SCI_IIC_STS_SP_COND_WAIT Wait state for a stop condition to be generated

4.1.2 Events During API Operation
Table 4.2 lists the Events Used for Protocol Control. When the interface functions accompanying this module are called,
they are defined as events as well as interrupts.

Table 4.2 Events Used for Protocol Control (enum sci_iic_api_event_t)

No. Event Event Definition
EV0 SCI_IIC_EV_INIT sci_iic_init_driver() called
EV1 SCI_IIC_EV_GEN_START_COND sci_iic_generate_start_cond() called
EV2 SCI_IIC_EV_INT_START STI interrupt occurred (interrupt flag: START)
EV3 SCI_IIC_EV_INT_ADD TXI interrupt occurred
EV4 SCI_IIC_EV_INT_SEND TXI interrupt occurred
EV5 SCI_IIC_EV_INT_STOP STI interrupt occurred (interrupt flag: STOP)
EV6 SCI_IIC_EV_INT_NACK STI interrupt occurred (interrupt flag: NACK)

RX Family Simple I2C Module Using Firmware Integration Technology

R01AN1691EJ0130 Rev. 1.30 Page 37 of 47
Aug. 25, 2014

4.1.3 Protocol State Transitions
In this module, a state transition occurs when an interface function provided is called or when an I2C interrupt request is
generated. Figure 4.1 to Figure 4.4 show protocol state transitions.

[SCI_IIC_STS_NO_INIT]
Uninitialized state

(STS0)

[SCI_IIC_STS_IDLE]
Idle state
(STS1)

(1) EV0('sci_iic_init_driver()' called)/
 Initialization processing

State

Notation conventions
Event[condition]/
Action on the event

Figure 4.1 State Transition on Initialization

RX Family Simple I2C Module Using Firmware Integration Technology

R01AN1691EJ0130 Rev. 1.30 Page 38 of 47
Aug. 25, 2014

Operation for pattern 1
(4) EV3 (TXI interrupt occurred)
 [Pointer to the first data storage
 buffer != NULL]/
 Starts transmitting the first byte of
 the first data

(1) EV1('sci_iic_drv_generate_start_cond()' called)/
 Starts generating a start condition

[SCI_IIC_STS_IDLE]
Idle state (STS1)

[SCI_IIC_STS_ST_COND_WAIT]
Wait state for a start condition

to be generated (STS2)

[SCI_IIC_STS_SEND_
DATA_WAIT]

Wait state for the data
transmission to complete

(STS5)

[SCI_IIC_STS_SP_COND_WAIT]
Wait state for a stop condition

to be generated (STS7)

Operation for Pattern 4
(3) EV2 (STI interrupt occurred)
 [Pointer to the slave address storage buffer == NULL]/
 Starts generating a stop condition

Operation for pattern 3
(6) EV3 (TXI interrupt occurred)
 [Pointer to the first data storage buffer == NULL &&
 pointer to the second data storage buffer == NULL]/
 Starts generating a stop condition

(10) EV4 (TXI interrupt occurred)
 [When the second data has been written]/
 Starts generating a stop condition

(11) EV5 (STI interrupt occurred)/
 End processing

(7) EV4 (TXI interrupt occurred)
 [Writing the first data continuously]/
 Starts transmitting the second byte of the first data
 or the subsequent byte

(8) EV4 (TXI interrupt occurred)
 [When the first data has been written]/
 Starts transmitting the first byte of the second data

(9) EV4 (TXI interrupt occurred)
 [Writing the second data continuously]/
 Starts transmitting the second byte of the second
 data or the subsequent byte

Operation for pattern 2
(5) EV3 (TXI interrupt occurred)
 [Pointer to the first data storage buffer == NULL &&
 pointer to the second data storage buffer != NULL]/
 Starts transmitting the first byte of the second data

State

Notation conventions

Event[condition]/
Action on the event

(2) EV2(STI interrupt occurred)
 [Pointer to the slave address storage buffer != NULL]/
 Starts transmitting the slave address (transfer direction: write)

[SCI_IIC_STS_SEND_SLVADR_W_WAIT]
Wait state for the slave address [write]

transmission to complete (STS3)

Figure 4.2 State Transition on Master Transmission

RX Family Simple I2C Module Using Firmware Integration Technology

R01AN1691EJ0130 Rev. 1.30 Page 39 of 47
Aug. 25, 2014

(2) EV2 (STI interrupt occurred)/
 Starts transmitting the slave address (transfer direction: read)

[SCI_IIC_STS_IDLE]
Idle state (STS1)

[SCI_IIC_STS_ST_COND_WAIT]
Wait state for a start condition

to be generated (STS2)

[SCI_IIC_STS_SEND_
SLVADR_R_WAIT]

Wait state for the slave address
[read] transmission to complete

(STS4)

[SCI_IIC_STS_RECEIVE
_DATA_WAIT]

Wait state for the data reception
to complete (STS6)

[SCI_IIC_STS_SP_COND_WAIT]
Wait state for a stop condition

 to be generated (STS7)

(1) EV1 ('sci_iic_drv_generate_start_cond()' called)/
 Starts generating a start condition

(3) EV3 (TXI interrupt occurred)/Starts receiving the first byte of the data

(5) EV3 (TXI interrupt occurred)
 [When the read operation has completed]/
 Starts generating a stop condition

(6) EV5 (STI interrupt occurred)
 End processing

(4) EV3 (TXI interrupt occurred)
 [Reading continuously]/
 Starts receiving the second byte of
 the data or the subsequent byte

State

Notation conventions
Event[condition]/
Action on the event

Figure 4.3 State Transition on Master Reception

RX Family Simple I2C Module Using Firmware Integration Technology

R01AN1691EJ0130 Rev. 1.30 Page 40 of 47
Aug. 25, 2014

[SCI_IIC_STS_IDLE]
Idle state (STS1)

[SCI_IIC_STS_ST_COND_WAIT]
Wait state for a start condition

to be generated (STS2)

[SCI_IIC_STS_SEND_
SLVADR_W_WAIT]

Wait state for the slave address
[write] transmission to complete

(STS3)

[SCI_IIC_STS_SP_COND
_WAIT]

Wait state for the stop condition
to be generated (STS7)

[SCI_IIC_STS_RECEIVE
_DATA_WAIT]

Wait state for the data reception
to complete

(STS6)

(1) EV1 ('sci_iic_drv_generate_start_cond()' called)/
 Starts generating a start condition

(2) EV2 (STI interrupt occurred)
 [The previous state is the idle state]/
 Starts transmitting the slave address
 (transfer direction: write)

(3) EV3 (TXI interrupt occurred)/
 Starts transmitting the first byte
 of data

(5) EV4 (TXI interrupt occurred)
 [When the write operation has completed]
 /Starts generating a restart condition

[SCI_IIC_STS_SEND
_SLVADR_R_WAIT]

Wait state for the slave address
[read] transmission to complete

(STS4)

(7) EV3 (TXI interrupt occurred)/
 Starts receiving the first byte of data

(9) EV3 (TXI interrupt occurred)
 [When the read operation has completed]/
 Starts generating a stop condition (10) EV5 (STI interrupt occurred)/

 End processing

(4) EV4 (TXI interrupt occurred)
 [Writing continuously]/
 Starts transmitting the second byte of
 the data or the subsequent byte

(8) EV3 (TXI interrupt occurred)
 [Reading continuously]/
 Start receiving the second byte of
 data or the subsequent byte

[SCI_IIC_STS_SEND
_DATA_WAIT]

Wait state for the data
transmission to complete

(STS5)

(6) EV2 (STI interrupt occurred)
 [The previous state is the wait state for
 the data transmission to complete]/
 Restarts transmitting the slave address
 (transfer direction: read)

State

Notation conventions
Event[condition]/
Action on the event

Figure 4.4 State Transition on Master Composite

RX Family Simple I2C Module Using Firmware Integration Technology

R01AN1691EJ0130 Rev. 1.30 Page 41 of 47
Aug. 25, 2014

4.1.4 Protocol State Transition Table
The processing when the events in Table 4.2 occur in the states in Table 4.1 is shown in the Table 4.3 Protocol State
Transition. Refer to Table 4.4 for details of each function.

Table 4.3 Protocol State Transition Table (gc_sci_iic_mtx_tbl[][]) (1)

State
Event

EV0 EV1 EV2 EV3 EV4 EV5 EV6

STS0 Uninitialized state
[SCI_IIC_STS_NO_INIT] Func0 ERR ERR ERR ERR ERR ERR

STS1 Idle state
[SCI_IIC_STS_IDLE] ERR Func1 ERR ERR ERR ERR ERR

STS2
Wait state for a start condition to be
generated
SCI_IIC_STS_ST_COND_WAIT

ERR ERR Func2 ERR ERR ERR Func7

STS3
Wait state for the slave address [write]
transmission to complete
[SCI_IIC_STS_SEND_SLVADR_W_WAIT]

ERR ERR ERR Func3 ERR ERR Func7

STS4
Wait state for the slave address [read]
transmission to complete
[SCI_IIC_STS_SEND_SLVADR_R_WAIT]

ERR ERR ERR Func3 ERR ERR Func7

STS5
Wait state for the data transmission to
complete
[SCI_IIC_STS_SEND_DATA_WAIT]

ERR ERR ERR ERR Func4 ERR Func7

STS6 Wait state for the data reception to complete
[SCI_IIC_STS_RECEIVE_DATA_WAIT] ERR ERR ERR Func5 ERR ERR Func7

STS7
Wait state for the stop condition to be
generated
[SCI_IIC_STS_SP_COND_WAIT]

ERR ERR ERR ERR ERR Func6 Func7

Note:
1. ERR indicates SCI_IIC_ERR_OTHER. When an unexpected event is notified in a state, error

processing will be performed.

4.1.5 Functions Used on Protocol State Transitions
Table 4.4 lists the Functions Used on Protocol State Transition.

Table 4.4 Functions Used on Protocol State Transition

Processing Function Overview
Func0 sci_iic_init_driver() Initialization
Func1 sci_iic_generate_start_cond() Start condition generation
Func2 sci_iic_after_gen_start_cond() Processing after generating a start condition
Func3 sci_iic_after_send_slvadr() Processing after transmitting the slave address
Func4 sci_iic_write_data_sending() Data transmission
Func5 sci_iic_read_data_receiving() Data reception
Func6 sci_iic_release() Communication end processing
Func7 sci_iic_nack() NACK error processing

RX Family Simple I2C Module Using Firmware Integration Technology

R01AN1691EJ0130 Rev. 1.30 Page 42 of 47
Aug. 25, 2014

4.1.6 Flag States on State Transitions
1) Controlling states of channels

Multiple slaves on the same bus can be exclusively controlled using the channel state flag ‘g_sci_iic_ChStatus[]’.
Each channel has the channel state flag and the flag is controlled by the global variable. When the initialization for
this module has completed and the target bus is not being used for a communication, the flag becomes
‘SCI_IIC_IDLE/SCI_IIC_FINISH/SCI_IIC_NACK’ (idle state) and communication is available. When the bus is
being used for communication, the flag becomes ‘SCI_IIC_COMMUNICATION’ (communicating). When
communication is started, the flag is always verified. Thus, if a device is communicating on a bus, then no other
device can start communicating on the same bus. Simultaneous communication can be achieved by controlling the
channel state flag for each channel.

2) Controlling states of devices

Multiple slaves on the same channel can be controlled using the device state flag ‘dev_sts’ in the I2C
communication information structure. The device state flag stores the state of communication for the device.

Table 4.5 lists States of Flags on State Transitions.

RX Family Simple I2C Module Using Firmware Integration Technology

R01AN1691EJ0130 Rev. 1.30 Page 43 of 47
Aug. 25, 2014

Table 4.5 States of Flags on State Transitions

State

Channel State Flag
Device State Flag

(Communication Device)
I2C Protocol Operating

Mode
Current State of the Protocol Control

g_sci_iic_ChStatus[]
I2C Communication

Information Structure
*p_dev_sts

Internal Communication
Information Structure

api_Mode

Internal Communication Information
Structure

api_N_status

Uninitialized state SCI_IIC_NO_INIT SCI_IIC_NO_INIT SCI_IIC_MODE_NONE SCI_IIC_STS_NO_INIT

Idle state

SCI_IIC_IDLE

SCI_IIC_FINISH

SCI_IIC_NACK

SCI_IIC_IDLE

SCI_IIC_FINISH

SCI_IIC_NACK

SCI_IIC_MODE_NONE SCI_IIC_STS_IDLE

Communicating

(master

transmission)

SCI_IIC_

COMMUNICATION

SCI_IIC_

COMMUNICATION
SCI_IIC_MODE_WRITE

SCI_IIC_STS_ST_COND_WAIT

SCI _IIC_STS_SEND_SLVADR_W_WAIT

SCI _IIC_STS_SEND_DATA_WAIT

SCI _IIC_STS_SP_COND_WAIT

Communicating

(master reception)

SCI_IIC_

COMMUNICATION

SCI_IIC_

COMMUNICATION
SCI_IIC_MODE_READ

SCI_IIC_STS_ST_COND_WAIT

SCI_IIC_STS_SEND_SLVADR_R_WAIT

SCI_IIC_STS_RECEIVE_DATA_WAIT

SCI_IIC_STS_SP_COND_WAIT

Communicating

(master

composite)

SCI_IIC_

COMMUNICATION

SCI_IIC_

COMMUNICATION

SCI_IIC_MODE_

COMBINED

SCI_IIC_STS_ST_COND_WAIT

SCI_IIC_STS_SEND_SLVADR_W_WAIT

SCI_IIC_STS_SEND_SLVADR_R_WAIT

SCI_IIC_STS_SEND_DATA_WAIT

SCI_IIC_STS_RECEIVE_DATA_WAIT

SCI_IIC_STS_SP_COND_WAIT

Error state SCI_IIC_ERROR SCI_IIC_ERROR

RX Family Simple I2C Module Using Firmware Integration Technology

R01AN1691EJ0130 Rev. 1.30 Page 44 of 47
Aug. 25, 2014

4.2 Interrupt Request Generation Timing
This section describes the interrupt request generation timings in this module.

Legend:
ST: Start condition

AD6 to AD0: Slave address

/W: Transfer direction bit: 0 (Write)

R: Transfer direction bit: 1 (Read)

/ACK: Acknowledge: 0

NACK: Acknowledge: 1

D7 to D0: Data

RST: Restart condition

SP: Stop condition

4.2.1 Master Transmission

(1) Pattern 1

ST AD6 to
AD0 /W /ACK D7 to D0 /ACK D7 to D0 /ACK SP

▲1: STI (START) interrupt: Start condition detected

▲2: TXI interrupt: Address transmission completed (transfer direction bit: write) (1)

▲3: TXI interrupt: Data transmission completed (first data) (1)

▲4: TXI interrupt: Data transmission completed (second data) (1)

▲5: STI (STOP) interrupt: Stop condition detected

(2) Pattern 2

ST AD6 to
AD0 /W /ACK D7 to D0 /ACK SP

▲1: STI (START) interrupt: Start condition detected

▲2: TXI interrupt: Address transmission completed (transfer direction bit: write) (1)

▲3: TXI interrupt: Data transmission completed (second data) (1)

▲4: STI (STOP) interrupt: Stop condition detected

Note:
1. An interrupt request is generated on the rising edge of the ninth clock.

▲2 ▲3 ▲4 ▲5 ▲1

▲2 ▲3 ▲4 ▲1

RX Family Simple I2C Module Using Firmware Integration Technology

R01AN1691EJ0130 Rev. 1.30 Page 45 of 47
Aug. 25, 2014

(3) Pattern 3

ST AD6 to
AD0 /W /ACK SP

▲1: STI (START) interrupt: Start condition detected

▲2: TXI interrupt: Address transmission completed (transfer direction bit: write) (1)

▲3: STI (STOP) interrupt: Stop condition detected

(4) Pattern 4

ST SP

▲1: STI (START) interrupt: Start condition detected

▲2: STI (STOP) interrupt: Stop condition detected

Note:
1. An interrupt request is generated on the rising edge of the ninth clock.

4.2.2 Master Reception

ST AD6 to
AD0 R /ACK D7 to D0 /ACK D7 to D0 NACK SP

▲1: STI (START) interrupt: Start condition detected

▲2: TXI interrupt: Address transmission completed (transfer direction bit: read) (1)

▲3: TXI interrupt: Reception for the last data - 1 completed (second data) (1)

▲4: TXI interrupt: Reception for the last data completed (second data) (2)

▲5: STI (STOP) interrupt: Stop condition detected

Notes:

1. An interrupt request is generated on the rising edge of the ninth clock.
2. An interrupt request is generated on the rising edge of the eighth clock.

▲2 ▲3 ▲1

▲2 ▲1

▲2 ▲3 ▲4 ▲5 ▲1

RX Family Simple I2C Module Using Firmware Integration Technology

R01AN1691EJ0130 Rev. 1.30 Page 46 of 47
Aug. 25, 2014

4.2.3 Master Composite

ST AD6 to
AD0 /W /ACK D7 to D0 /ACK RST AD6 to

AD0 R

/ACK D7 to D0 /ACK D7 to D0 NACK SP

▲1: STI (START) interrupt: Start condition detected

▲2: TXI interrupt: Address transmission completed (transfer direction bit: write) (1)

▲3: TXI interrupt: Data transmission completed (first data) (1)

▲4: STI (START) interrupt: Restart condition detected

▲5: TXI interrupt: Address transmission completed (transfer direction bit: read) (1)

▲6: TXI interrupt: Reception for the last data - 1 completed (second data) (1)

▲7: TXI interrupt: Reception for the last data completed (second data) (2)

▲8: STI (STOP) interrupt: Stop condition detected

Notes:
1. An interrupt request is generated on the rising edge of the ninth clock.
2. An interrupt request is generated on the rising edge of the eighth clock.

▲2 ▲3

▲5 ▲6 ▲7 ▲8

▲1 ▲4

RX Family Simple I2C Module Using Firmware Integration Technology

R01AN1691EJ0130 Rev. 1.30 Page 47 of 47
Aug. 25, 2014

5. Provided Modules
The module provided can be downloaded from the Renesas Electronics website.

6. Reference Documents
User’s Manual: Hardware

The latest version can be downloaded from the Renesas Electronics website.

Technical Update/Technical News

The latest information can be downloaded from the Renesas Electronics website.

User’s Manual: Development Tools

RX Family C/C++ Compiler Package V.1.01 User’s Manual Rev.1.00 (R20UT0570EJ)
The latest version can be downloaded from the Renesas Electronics website.

Website and Support

Renesas Electronics website

http://www.renesas.com

Inquiries

http://www.renesas.com/contact/

http://www.renesas.com/
http://www.renesas.com/contact/

A-1

REVISION HISTORY RX Family Application Note
Simple I2C Module Using Firmware Integration Technology

Rev. Date
Description

Page Summary
1.00 July 1, 2013 — First edition issued
1.10 Nov. 15, 2013 — Modified return values.
1.20 July 1, 2014 1 Target Device: Added the RX100 Series support.

4

Table 1.2 Required Memory Size:
- Changed all memory sizes in association with additional support
for the RX100 Series and additional function for port selection.

- Modified the description of the first sentence below the table.
 13 2.3 Supported Toolchains: Updated the toolchain version to v.2.01.

15
2.6 Configuration Overview (Configuration options in
r_sci_iic_rx_config.h (2/2)): Added the configuration option
definitions in association with additional function for port selection.

 17 2.9 Adding the FIT Module to Your Project: Modified the description.
1.30 Aug. 25, 2014 — Added support for the RX113 Group and RX64M Group.

 1 Target Device: Changed according to the products supported.
 1 Added the “Related Documents”.
 3 Limitations: Added three limitation items.

4
Table 1.2 Required Memory Size: Modified the memory sizes for the
ROM, Maximum user stack usage, and Maximum interrupt stack
usage.

 13 2.2 Software Requirements: Deleted “r_cgc_rx” since this module is
independent of the r_cgc_rx.

14-16

Configuration Overview:
- Added channel support for the configuration options.

Channels supported: 0 to 9, 12
- Added the following configuration option:
“SCI_IIC_CFG_PORT_SETTING_PROCESSING”.

 21, 26,
32

3.2 R_SCI_IIC_MasterSend(),3.3 R_SCI_IIC_MasterReceive(), and
3.4 R_SCI_IIC_Close(): Modified the code in the Example sections.

All trademarks and registered trademarks are the property of their respective owners.

General Precautions in the Handling of MPU/MCU Products
The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that
have been issued for the products.

1. Handling of Unused Pins
Handle unused pins in accordance with the directions given under Handling of Unused Pins in the
manual.
 The input pins of CMOS products are generally in the high-impedance state. In operation with an

unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an
associated shoot-through current flows internally, and malfunctions occur due to the false
recognition of the pin state as an input signal become possible. Unused pins should be handled as
described under Handling of Unused Pins in the manual.

2. Processing at Power-on
The state of the product is undefined at the moment when power is supplied.
 The states of internal circuits in the LSI are indeterminate and the states of register settings and

pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of pins
are not guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function
are not guaranteed from the moment when power is supplied until the power reaches the level at
which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
Access to reserved addresses is prohibited.
 The reserved addresses are provided for the possible future expansion of functions. Do not access

these addresses; the correct operation of LSI is not guaranteed if they are accessed.
4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.
When switching the clock signal during program execution, wait until the target clock signal has
stabilized.
 When the clock signal is generated with an external resonator (or from an external oscillator)

during a reset, ensure that the reset line is only released after full stabilization of the clock signal.
Moreover, when switching to a clock signal produced with an external resonator (or by an external
oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products
Before changing from one product to another, i.e. to a product with a different part number, confirm
that the change will not lead to problems.
 The characteristics of an MPU or MCU in the same group but having a different part number may

differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect
the ranges of electrical characteristics, such as characteristic values, operating margins, immunity
to noise, and amount of radiated noise. When changing to a product with a different part number,
implement a system-evaluation test for the given product.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the

use of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or

technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or

third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on

the product's quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical

implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it

in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses

incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the

use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and

malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the

possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,

please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics

products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or

regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the

development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and

regulations and follow the procedures required by such laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the

contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics

products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022/9044
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics Korea Co., Ltd.
12F., 234 Teheran-ro, Gangnam-Ku, Seoul, 135-920, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2014 Renesas Electronics Corporation. All rights reserved.
Colophon 4.0

	1. Overview
	1.1 SCI Simple I2C Mode FIT Module
	1.2 Outline of the API
	1.3 Overview of SCI Simple I2C Mode FIT Module
	1.3.1 Specifications of SCI Simple I2C Mode FIT Module
	1.3.2 Master Transmission
	1.3.3 Master Reception
	1.3.4 State Transition
	1.3.5 Flags when Transitioning States

	2. API Information
	2.1 Hardware Requirements
	2.2 Software Requirements
	2.3 Supported Toolchains
	2.4 Header Files
	2.5 Integer Types
	2.6 Configuration Overview
	2.7 Parameters
	2.8 Return Values
	2.9 Adding the FIT Module to Your Project

	3. API Functions
	3.1 R_SCI_IIC_Open()
	3.2 R_SCI_IIC_MasterSend()
	3.3 R_SCI_IIC_MasterReceive()
	3.4 R_SCI_IIC_Close()
	3.5 R_SCI_IIC_GetStatus()
	3.6 R_SCI_IIC_Control()
	3.7 R_SCI_IIC_GetVersion()

	4. Appendices
	4.1 Communication Method
	4.1.1 States for API Operation
	4.1.2 Events During API Operation
	4.1.3 Protocol State Transitions
	4.1.4 Protocol State Transition Table
	4.1.5 Functions Used on Protocol State Transitions
	4.1.6 Flag States on State Transitions

	4.2 Interrupt Request Generation Timing
	4.2.1 Master Transmission
	4.2.2 Master Reception
	4.2.3 Master Composite

	5. Provided Modules
	6. Reference Documents

