
 User's Manual

R20UW0031EJ0106 Rev.1.06 Page 1 of 93
Apr 01, 2014

Renesas microcomputer
TCP/IP for Embedded system M3S-T4-Tiny: User's Manual

Introduction
This document explains the usage of the M3S-T4-Tiny software library along with a sample program.

Target Device
Renesas microcomputer

Contents

R20UW0031EJ0106
Rev.1.06

Apr 01, 2014

Renesas microcomputer TCP/IP for Embedded system M3S-T4-Tiny: User's Manual

R20UW0031EJ0106 Rev.1.06 Page 2 of 93
Apr 01, 2014

1. T4 Library specifications ... 6
1.1 Overview .. 6
1.2 Basic knowledge of TCP/IP .. 8

1.2.1 About the Connection ... 8

1.2.2 About the Client-Server Model ... 8

1.2.3 IP Address and Port Number .. 8

1.2.4 About the Socket ... 8
1.3 Basic Knowledge of ITRON TCP/IP API Specification .. 9

1.3.1 Handling of Connection .. 9

1.3.2 Handling of a Client/Server Model.. 9

1.3.3 Reception Points and Communication End Points ... 9
1.4 Definition of Terms ... 10

1.4.1 Reception Point ... 10

1.4.2 Communication End Points .. 10

1.4.3 Timeout .. 10

1.4.4 Non-blocking Calls and Callback ... 10

1.4.5 Polling .. 10

1.4.6 Pending .. 10

1.4.7 MSS (Maximum Segment Size) ... 11

1.4.8 IP Fragments ... 11

1.4.9 Receive Window .. 11

1.4.10 PPP (Point to Point Protocol) ... 11

1.4.11 PAP (Password Authentication Protocol) .. 11

1.4.12 ICMP (Internet Control Message Protocol) .. 11

1.4.13 ARP (Address Resolution Protocol) .. 11
1.5 Program development produce ... 12

2. Outline of the T4 ... 13
2.1 Product information .. 13

2.1.1 Document... 13

Renesas microcomputer TCP/IP for Embedded system M3S-T4-Tiny: User's Manual

R20UW0031EJ0106 Rev.1.06 Page 3 of 93
Apr 01, 2014

2.1.2 T4 Library ... 13

2.1.3 Sample Program .. 13
2.2 Outline Library Specifications ... 14

3. T4 Library type definitions ... 15

4. T4 Library structures .. 16
4.1 TCP object structure ... 16
4.2 UDP object structure .. 16

5. T4 Library enums ... 17
5.1 TCP function return code ... 17
5.2 UDP function return code ... 17
5.3 Error Codes Used in APIs .. 17
5.4 Timeout .. 17
5.5 Special IP Address and Port Numbers ... 17

6. T4 Configuration File .. 18
6.1 Definition of LAN port number... 19
6.2 Definition of TCP reception points .. 20
6.3 Definition of TCP communication end points .. 21
6.4 Definition of UDP communication end points .. 22
6.5 Definition of IP header-related ... 23
6.6 Definition of TCP options ... 24

6.6.1 MSS for TCP .. 24

6.6.2 Initial value of sequence number ... 24

6.6.3 2-MSL wait time ... 24

6.6.4 Maximum value of retransmission timeout period ... 25

6.6.5 Presence of TCP multiple transmit for Delay ACK .. 25
6.7 UDP option settings .. 26

6.7.1 UDP zero checksum definition ... 26
6.8 Local node settings (Ethernet) .. 27
6.9 Local node settings (PPP) .. 28

6.9.1 Local node settings (PPP client) .. 29

6.9.2 Local node settings (PPP server) ... 29

6.9.3 Common settings for modem (PPP server/PPPclient) 29

7. T4 Configuration File (Several LAN ports) .. 30

Renesas microcomputer TCP/IP for Embedded system M3S-T4-Tiny: User's Manual

R20UW0031EJ0106 Rev.1.06 Page 4 of 93
Apr 01, 2014

7.1 LAN port number definition ... 31
7.2 Definition of TCP reception points .. 32
7.3 Definition of TCP communication end points .. 33
7.4 Definition of UDP communication end points .. 34
7.5 Definition of IP header-related ... 35
7.6 Definition of TCP options ... 36
7.7 Definition of UDP options ... 37

7.7.1 UDP zero checksum definition ... 37
7.8 Local node settings (Ethernet) .. 38

8. T4 Library functions ... 40
8.1 tcp_acp_cep... 41
8.2 tcp_con_cep .. 42
8.3 tcp_sht_cep ... 44
8.4 tcp_cls_cep .. 45
8.5 tcp_snd_dat ... 46
8.6 tcp_rcv_dat .. 47
8.7 tcp_can_cep... 48
8.8 udp_snd_dat .. 49
8.9 udp_rcv_dat ... 51
8.10 udp_can_cep ... 53
8.11 ppp_open ... 54
8.12 ppp_close ... 55
8.13 ppp_status ... 56
8.14 ppp_api_req ... 57
8.15 callback .. 59
8.16 tcpudp_get_ramsize ... 60
8.17 tcpudp_open .. 61
8.18 _process_tcpip .. 62
8.19 tcpudp_close ... 63

9. Ethernet and PPP Driver API Specifications .. 64
9.1 lan_open ... 66
9.2 lan_close .. 67
9.3 sio_open ... 68
9.4 sio_close .. 69
9.5 modem_active_open ... 70
9.6 modem_passive_open .. 71
9.7 modem_close .. 72

10. Sample Program ... 74
10.1 Flow of the main function ... 74

Renesas microcomputer TCP/IP for Embedded system M3S-T4-Tiny: User's Manual

R20UW0031EJ0106 Rev.1.06 Page 5 of 93
Apr 01, 2014

10.2 Flow of the TCP echo back server function(for blocking call) ... 74

10.2.1 Flow of the echo back server function .. 74
10.3 Flow of the TCP echo back server function (for nonblocking call) 74

10.3.1 Flow of the echo back server function .. 74

10.3.2 Flow of the callback function ... 74
10.4 Flow of the UDP echo back server function (for blocking call) .. 74

10.4.1 Flow of the echo back server function .. 74
10.5 Flow of the UDP echo back server function (for nonblocking call) 74

10.5.1 Flow of the echo back server function .. 74

10.5.2 Flow of the callback function ... 74
10.6 Execution Environment .. 81
10.7 Execution Method ... 82
10.8 Execution Environment (several LAN port) .. 84
10.9 Execution Method(Several LAN port) ... 85

11. T4 Limitations and Usage Precautions ... 87

Renesas microcomputer TCP/IP for Embedded system M3S-T4-Tiny: User's Manual

R20UW0031EJ0106 Rev.1.06 Page 6 of 93
Apr 01, 2014

1. T4 Library specifications
1.1 Overview
The Tiny TCP/IP library M3S-T4-Tiny (hereafter referred to as "the T4") is the network software library for the
following series and groups of microcomputers. This manual provides the common information necessary to create
application programs using the T4. The MCU-dependent information (e.g., development environment) is supplied in the
respective Introduction Guide.

* This is scheduled to expand for corresponding CPU and for corresponding protocol, Ethernet and PPP

* The latest information of T4(support MCU and support network (Ethernet/PPP)) is shown on Renesas Web page.

Fig 1 shows the position of the T4 in a software group associated with network middleware.

Fig 1. Position of the T4 in network software structure
Fig 1 shows the position of the T4 in a general structure of the software that comprises network middleware.

Shown in the gray background at center is the T4.

 The arrows represent function calls.

The T4 performs protocol processing between the Ethernet or PPP driver and an application program as it sends or
receives data to and from the network.

Included as protocol processing in the T4 are TCP, UDP, IP, ICMP, ARP and PPP.

To perform TCP or UDP communication from a user application or a higher-level protocol program, functions must be
called from within the library by using the API (compliant with ITRON TCP/IP API) that is stipulated in the T4. IP,
ICMP, ARP and PPP are the lower-level protocols below TCP and UDP, so that in no case will the functions to process
these protocols be called directly from a user application.

The T4 supports Ethernet and PPP as the data link and physical layers. Of these, part of the library that depends on the
user hardware such as LAN controller or serial I/O is separated as a driver from the library body.

To create drivers matched to the hardware used, refer to specifications for the driver API that are written in the user's
manual for the driver concerned.

* The user's manuals for drivers are included with the product package separately from this manual.
 When using the T4 to create a program, make sure that the driver's initialization and termination functions are called
directly from the program. (In Figure 1, these function calls are shown by the gray arrows.) Specifications of these API
functions are described in the T4 manual, not just in the user's manual for the driver.

T4 supports several LAN port. It is enable to set the several IP address to the several LAN ports.

User Appl icat ion HTTPserver ,etc .

ITRON TCP/ IP API

TCP, UDP

Ethernet PPP

IP, ARP, ICMP

Ethernet dr iver PPP dr iver

Renesas microcomputer TCP/IP for Embedded system M3S-T4-Tiny: User's Manual

R20UW0031EJ0106 Rev.1.06 Page 7 of 93
Apr 01, 2014

 This product package comes with sample programs for drivers. Refer to these sample programs when creating your
original driver.

The T4 library does not use the real-time OS.

Renesas microcomputer TCP/IP for Embedded system M3S-T4-Tiny: User's Manual

R20UW0031EJ0106 Rev.1.06 Page 8 of 93
Apr 01, 2014

1.2 Basic knowledge of TCP/IP
This section describes the basic knowledge of TCP/IP which may be needed to use the T4.

The T4 has adopted APIs suitable for embedded systems, and is therefore partly different from general TCP/IP such as
those in BSD or Linux. These differences are described later, as compared with the general TCP/IP described in this
section.

The contents described here are limited to the absolute minimum that is needed to be able to understand what is written
in this manual. For more information about TCP/IP, please read technical books generally available on the market.

1.2.1 About the Connection
TCP creates a virtual communication path to communicate. This virtual communication path is referred to as a
"connection". To have a connection with the other node of communication is referred to as "establish a connection".
One program (a program running on the computer used for communication) can have two or more connections, and can
therefore communicate with multiple computer programs. However, only one node can be communicated in one
connection.

To establish one connection, a negotiation between the local and remote node (i.e., between the two sides of
communication) must be performed. Once a connection is established, communication can be performed in two
directions. (There is no need to have two different connections, one for transmission and one for reception.) The
procedure for establishing a connection this way is referred to as "request a connection".

On the other hand, UDP does not establish a connection to perform communication. Because communication is
attempted unilaterally without confirming the communication status of the other node, no steps are taken to establish a
connection or negotiate with the other node to confirm whether communication has terminated normally.

1.2.2 About the Client-Server Model
TCP uses the concept of a client-server model in the negotiation to establish a connection described above. One node of
communication plays the role of a "client", and the other plays the role of a "server". When a connection is established,
the server only waits for a request for connection to be issued by some unidentified node of communication, while the
client specifies the address of the server to communicate with to identify the other node of communication before
requesting a connection.

Once a connection is established through steps taken on both sides, whichever side - client or server - can perform
transmit or receive operation as desired.

Generally speaking, however, the TCP/IP communication program itself is implemented in the form of a client-server
model. In this case, the server is implemented so as to wait for a request from the client and return information to the
client.

1.2.3 IP Address and Port Number
The IP address and port number are the address information necessary to indicate the local or remote node in TCP/IP or
UDP/IP communication.

• The IP address is a unique address that indicates the communication port through which to communicate.
• The port number is a number that indicates the application program with which to communicate.

The IP address must be a unique number throughout the world except for local networks not connected to Internet.
(There is a special organization by which IP addresses are assigned).

The port number must be unique among all communication programs operating in the same computer.

1.2.4 About the Socket
General TCP/IP uses an API called the "socket" in communication. Although complicated processing is performed in
TCP/IP and UDP/IP packet communication, various APIs such as those for initialization, request connection, transmit,
receive and termination processing are available to use when creating application programs, allowing for
communication processing to be programmed easily - as if programming C language file input/outputs - without
concern for complicated packet processing. An abstract data structure known as the socket is used in APIs.

Renesas microcomputer TCP/IP for Embedded system M3S-T4-Tiny: User's Manual

R20UW0031EJ0106 Rev.1.06 Page 9 of 93
Apr 01, 2014

1.3 Basic Knowledge of ITRON TCP/IP API Specification
This section describes the basic knowledge of ITRON TCP/IP API Specification (hereafter called simply ITRON
Specification) that is adopted in the T4. However, the contents described here are limited to the absolute minimum that
is needed to be able to understand what is written in this manual. For more information about ITRON TCP/IP API
Specification, please read the specifications issued by the Embedded TCP/IP Technical Committee in the ITRON
Technical Committee, TRON Association, which are published at the home page shown below.

 URL: http://www.ertl.jp/ITRON/SPEC/tcpip-e.html

1.3.1 Handling of Connection
In ITRON TCP, the procedure for requesting a connection is referred to as "request connection" or "wait for connection
request". The difference between the two will be described later.

1.3.2 Handling of a Client/Server Model
In ITRON TCP too, the client/server model is used in connection procedures as in general TCP/IP. However, the term
"client" or "server" is not used in ITRON TCP specifications. Instead, two separate connection-related APIs are
provided, one for server use which is called "Wait for Connection Request (Passive Open)", and one for client use
which is called "Request Connection (Active Open)". Namely, one that "requests a connection" is the client, and one
that "waits for a connection request" is the server.

1.3.3 Reception Points and Communication End Points
In ITRON TCP, the "socket" structure is not used in communication. Instead, the structures called the "reception point"
and "communication end point" are used. These types of structures have been conceived as a result of considerations
given to the following requirements for embedded systems:

(1)The memory area for buffers and the number of times data is copied must be a possible minimum.

(2)There must be as little need for dynamic memory management inside the protocol stack as possible.

(3)Asynchronous interfaces or non-blocking calls must be supported.

(4)Detailed information about errors in each API is desirable.

(Excerpt from specifications issued by the Embedded TCP/IP Technical Committee in the ITRON Technical
Committee, TRON Association)

http://www.ertl.jp/ITRON/SPEC/tcpip-e.html

Renesas microcomputer TCP/IP for Embedded system M3S-T4-Tiny: User's Manual

R20UW0031EJ0106 Rev.1.06 Page 10 of 93
Apr 01, 2014

1.4 Definition of Terms
1.4.1 Reception Point
The reception point is a structure used in an API during TCP communication. More specifically, it is used in an API
(function tcp_acp_cep()) that a node (server) uses in order to wait for a connection request from the other node of
communication (client). There can be two or more reception points in the entire program, which are defined as one
array of structures in the entire program.

The API waiting for a connection request uses a parameter to specify the reception point used. This specification is
made by specifying a unique ID number beginning with 1, and not by specifying a pointer to the structure. The ID
number, rather than being defined by the programmer, is automatically assigned by the T4 sequentially beginning with
the first ID number when defining an array of reception point structures.

Therefore, the programmer can keep track of which reception point in a defined structure array is assigned which ID
number.

In specifications stipulated by the TRON Association, the reception point has as its members an attribute and the local
IP address and port number.

1.4.2 Communication End Points
The communication end point is a structure used in APIs during TCP and UDP communication. The communication
end point (as for the reception point) is defined as an array of structures, with each structure identified by an ID number
that is assigned sequentially beginning with the first structure. These IDs for communication end points are used when
establishing a connection with the other node, sending or receiving data, and closing the connection.

In specifications stipulated by the TRON Association, the TCP communication end point has as its members an
attribute, top address and size of transmit window, top address and size of receive window, and an address of callback
routine.

In TCP, the communication end point whose connection is completely closed is referred to as in an "unused" state.

In specifications stipulated by the TRON Association, the UDP communication end point has as its members an
attribute, the local IP address and port number, and an address of callback routine.

1.4.3 Timeout
When an API is called, its processing may take time, to be kept waiting in the function. In this case, if the processing
cannot be completed within a specified time (timeout period), it can be canceled, allowing for return from the API. This
condition is referred to as "timeout".

1.4.4 Non-blocking Calls and Callback
A non-blocking call refers to one in which when a task is kept waiting in an API, it returns from the API while letting
processing to continue. Then, after returning from the API, the task may notify the application that the continued
processing has finished, which is referred to as "callback".

1.4.5 Polling
Polling is the same as a timeout processing in which the timeout period is set to 0.

1.4.6 Pending
The state of a task kept waiting in the API is referred to as "pending".

Renesas microcomputer TCP/IP for Embedded system M3S-T4-Tiny: User's Manual

R20UW0031EJ0106 Rev.1.06 Page 11 of 93
Apr 01, 2014

1.4.7 MSS (Maximum Segment Size)
MSS refers to the maximum size of a segment that can be transmitted at a time in TCP protocol processing. It is
determined uniformly in a system. (* Even in the T4, MSS must be defined.) If the transmit data passed in an API from
an application program is larger than the MSS, the TCP protocol processing unit divides it into MSS for transmission as
several segments. The transmit data that is divided this way is a data-only part that does not include the TCP header.

In TCP, the MSS information on the local and remote node are exchanged at the initial stage of communication, and
data is transmitted in a smaller MSS size of the two. The MSS thus selected is placed in the option part of the TCP
header. Therefore, this feature is expressed as "MSS in header option".

* The T4 supports this feature.

1.4.8 IP Fragments
One of the optional features of IP protocol processing, this is a mechanism used in cases where the router uses a
communication path with small MTU (Maximum Transmission Unit) and the data to transmit is larger than the MTU in
size. In such a case, the data is divided into fragments smaller than the MTU before being transmitted, and the data
ultimately is reconstructed on the receiver side. In Ethernet, for example, the MTU is 1,500 bytes, so that if the data to
transmit is larger than that, it must be divided into smaller sizes.

* the T4 does not support this feature. Therefore, if the need arises to use a communication path with small MTU to
communicate, the MSS must be set to a size smaller than the MTU.

1.4.9 Receive Window
This refers to a buffer area in which to store the received data. In TCP, the sender waits for an acknowledge from the
other node each time it transmits a segment. However, because this results in an increased overhead, the receiver
notifies the sender of the remaining size of the receive window by using the TCP header during communication,
allowing the sender to transmit segments successively without waiting for acknowledges each time until the receive
window is filled.

When the receive window is filled during communication, the sender stops transmitting segments upon receipt of
notification, and waits until it is notified by the receiver that the receive window is empty.

* T4 waits for transmitting the ACK packet and transmits it twice.

1.4.10 PPP (Point to Point Protocol)
This protocol is used to place IP protocol on a serial communication line. It includes as its ancillary protocol a
procedure for authenticating the user after connecting the line.

1.4.11 PAP (Password Authentication Protocol)
One of authentication protocols in PPP connection, this is used to authenticate the correctness of the password
transmitted by the originator. Although passwords are encrypted on the server side, they are not encrypted on
communication lines. One of the similar protocols is CHAP, which because passwords are encrypted, provides higher
reliability than PAP.

1.4.12 ICMP (Internet Control Message Protocol)
Always used along with IP, this protocol is provided for notifying errors that occurred when delivering IP packets, as
well as for inspecting or notifying the IP status of each host.

1.4.13 ARP (Address Resolution Protocol)
This protocol is used to convert the IP address into the MAC address (e.g., Ethernet address).

Renesas microcomputer TCP/IP for Embedded system M3S-T4-Tiny: User's Manual

R20UW0031EJ0106 Rev.1.06 Page 12 of 93
Apr 01, 2014

1.5 Program development produce
The flowchart in Fig 2 shows the development of application program for the T4.

Fig 2. The development flowchart of application program

C language
source file

T4 library user
configuration file

Assembly
language

 fil

Object file

TCP/IP library

(T4)

Link map Load module

C standard
laibrary

C compiler Assembler

Linker

Renesas microcomputer TCP/IP for Embedded system M3S-T4-Tiny: User's Manual

R20UW0031EJ0106 Rev.1.06 Page 13 of 93
Apr 01, 2014

2. Outline of the T4
2.1 Product information
The T4 consists of library files, sample drivers and sample application.

Table 1. Directory Structure for the T4

 Description
Document (doc)

rzzz1_t4tiny.pdf User's manual (this note)
rzzz2_t4tiny.pdf Ethernet driver interface specification
rzzz3_t4tiny.pdf PPP driver interface specification
rzzz4_xxx_t4.pdf Introduction Guide

T4 Library (lib)

 T4_Library_xxx_ether_yyy.lib
T4_Library_xxx_ppp_yyy.lib

T4 Library file (for Ethernet)
T4 Library file (for PPP)

 r_t4_itcpip.h Header file for T4

Make Library environment
(make_lib)

make_lib.zip Make Library environment(include source code)

xxx : CPU name (ex. rx600, h8s2600, sh2a) yyy : CPU settings (ex. big, little, advanced)
zzz1-zzz4 : document name

2.1.1 Document
These are complete package of information where information necessary to use T4 was described. The Introduction
Guide has described information, version information, and the update history, etc. that depend on the microcomputer.

2.1.2 T4 Library
• Library files (binary file)

These files contain API functions and various protocol processing programs. Use these files along with the
application program after linking.
Use T4_Library_xxx_ether_yyy.lib when using Ethernet or T4_Library_xxx_ppp_yyy.lib when using PPP.

• Header files (r_t4_itcpip.h)
The T4 API prototype declarations, macro definitions, etc. are written in this file. For application programs that call
T4 APIs, include this header file.

2.1.3 Sample Program
Sample sources for application programs (which use Telenet) are included. Refer to Chapter 9 for details on how to run
the application programs.

This sample program includes "Physical layer driver" source code (Ethernet or Serial). The user should modify the
match to the user system.

Renesas microcomputer TCP/IP for Embedded system M3S-T4-Tiny: User's Manual

R20UW0031EJ0106 Rev.1.06 Page 14 of 93
Apr 01, 2014

2.2 Outline Library Specifications
Outline specifications of the T4 are shown in Table 2. This library supports the TCP, UDP, IP, ICMP, ARP and PPP
protocols. The Application Program Interface (API) is compliant with ITRON TCP/IP API Specification.

Table 2. Outlines Specifications by Protocol

Protocol Item Specification
TCP API Compliant with ITRON TCP/IP API Specification
 Non-blocking call Supported
 Callback feature Supported
 Queuing Not supported
 Maximum size TCP data segment length (data length): 1,480 (1,460) bytes

TCP header option
Only MSS is supported
Reception: Header options except MSS are ignored
Transmission: No header options except MSS are accepted

TCP reception point 30 points
communication endpoint 30 points

UDP API Compliant with ITRON TCP/IP API Specification
 Non-blocking call Supported
 Callback feature Supported
 Queuing Not supported

Maximum size * UDP datagram length (data length): 1,480 (1,472) bytes
communication endpoint 30 points

Multicast
Support only receiving (224.0.0.0 - 239.255.255.255)
Support only sending to Local Area.
(T4 does not support IGMP)

IP Version IPv4 (version 4) only

 Fragment
Not supported
Reception: Fragmented datagrams are discarded
Transmission: datagrams cannot be fragmented

 Header option

Not supported
Reception: datagrams that include header options are
 discarded
Transmission: No header options are accepted

 Maximum size * IP datagram (data length): 1,500 (1,480) bytes
ICMP

Message type

Only echo responses are supported
Reception: Only echo request

Other messages discarded
Transmission: Only echo response

ARP Cache entry depend on User definition
 Cache retention time Approx. 10 minutes
PPP Server/client Server/Client are supported.
 Maximum size * PPP frame (data length): 1,504 (1,500) bytes
 Authentication method PAP

Compression option
Compression-related options are not supported
Setup requests for compressing the protocol field,
address and control field and TCP/IP header are rejected

* The maximum sizes of TCP, UDP, IP, and PPP depend on the transmission/reception buffers sizes of the
driver.

* Ether can support several port, PPP supports one channel

Renesas microcomputer TCP/IP for Embedded system M3S-T4-Tiny: User's Manual

R20UW0031EJ0106 Rev.1.06 Page 15 of 93
Apr 01, 2014

3. T4 Library type definitions
This section gives the details about the type definitions used in the library.

Datatype Typedef
signed char int8_t
unsigned char uint8_t
signed short int16_t
unsigned short uint16_t
signed long int32_t
unsigned long uint32_t
signed char B
signed short H
signed long W
unsigned char UB
unsigned short UH
unsigned long UW
signed char VB
signed short VH
signed long VW
void far *VP
void (*FP)();
signed long INT
unsigned long UINT
signed short ID
signed short PRI
signed long TMO
signed short HNO
signed long ER
unsigned short ATR
signed long FN

Renesas microcomputer TCP/IP for Embedded system M3S-T4-Tiny: User's Manual

R20UW0031EJ0106 Rev.1.06 Page 16 of 93
Apr 01, 2014

4. T4 Library structures
This section gives the details of the structures used in the library.

User does not need using gray out members.

4.1 TCP object structure
The TCPUDP_ENV structure is Internet Protocol related definition.

Datatype Structure element Explanation
UB ipaddr[4] Local IP address
UB maskaddr[4] Subnet mask
UB gwaddr[4] Gateway address

The T_IPV4EP structure is IP address/Port No. information.
Datatype Structure element Explanation
UW ipaddr IP address
UH portno Port number

The T_TCP_CREP structure is TCP reception point.
Datatype Structure element Explanation
ATR repatr TCP reception point attribute
T_IPV4EP myaddr Local IP address and port number

The T_TCP_CCEP structure is TCP communication end point.
Datatype Structure element Explanation
ATR cepatr TCP communication end point attribute

Number of LAN port: 0-LAN port number
Please refer to the section 6.1. to know
LAN port settings

VP sbuf Top address of transmit window buffer
INT sbufsz Size of transmit window buffer
VP rbuf Top address of receive window buffer
INT rbufsz Size of receive window buffer
ER (*callback)(ID cepid, FN fncd ,

VP p_parblk)
Callback routine

4.2 UDP object structure
The T_UDP_CCEP structure is UDP communication end point.

Datatype Structure element Explanation
ATR cepatr UDP communication end point attribute

Number of LAN port: 0-LAN port number
Please refer to the section 6.1. to know
LAN port settings

T_IPV4EP myaddr Local IP address and port number
ER (*callback)(ID cepid, FN fncd ,

VP p_parblk)
Callback routine

Renesas microcomputer TCP/IP for Embedded system M3S-T4-Tiny: User's Manual

R20UW0031EJ0106 Rev.1.06 Page 17 of 93
Apr 01, 2014

5. T4 Library enums
This section gives the details of the enums used in the library.

5.1 TCP function return code
Enum Value Value Significance
TFN_TCP_ACP_CEP -0x205 Wait for TCP connection request
TFN_TCP_CON_CEP -0x206 TCP connection request(active open)
TFN_TCP_SHT_CEP -0x207 TCP data transmission end
TFN_TCP_CLS_CEP -0x208 TCP communication end point close
TFN_TCP_SND_DAT -0x209 Transmission of TCP data
TFN_TCP_RCV_DAT -0x20A Reception of TCP data
TFN_TCP_ALL 0 Select all TCP API function code

5.2 UDP function return code
Enum Value Value Significance
TFN_UDP_SND_DAT -0x223 Transmission of UDP data
TFN_UDP_RCV_DAT -0x224 Reception of UDP data (After call udp_rcv_dat())
TEV_UDP_RCV_DAT 0x221 Reception of UDP data (Before call udp_rcv_dat())
TFN_UDP_ALL 0 Select all UDP API function code

5.3 Error Codes Used in APIs
Enum Value Value Significance
E_OK 0 Terminated normally
E_NOSPT -9 function is not supported
E_PAR -17 Parameter error
E_OBJ -41 Object status error
E_QOVR -43 Queuing overflow
E_WBLK -57 Non-blocking call accept
E_TMOUT -50 Timeout
E_RLWAI -49 Forced release from waiting
E_CLS -52 Failed to connect
E_BOVR -58 Buffer overflow

5.4 Timeout
Enum Value Value Significance
TMO_POL 0 Polling
TMO_FEVR -1 Waiting forever
TMO_NBLK -2 Non-blocking call

5.5 Special IP Address and Port Numbers
Enum Value Value Significance
TCP_PORTANY 0 TCP port number specification omitted
NADR 0 Invalid address

Renesas microcomputer TCP/IP for Embedded system M3S-T4-Tiny: User's Manual

R20UW0031EJ0106 Rev.1.06 Page 18 of 93
Apr 01, 2014

6. T4 Configuration File
Define TCP reception points, TCP communication end points, UDP communication end points, TCP options and local
node settings (Ethernet or PPP). These definitions can be made in an application program providing that they are set
before initializing the T4. However, all items must be set regardless of how they will be used.

Each of the following definitions is explained by using the configuration file config_tcpudp.c as an example.

Renesas microcomputer TCP/IP for Embedded system M3S-T4-Tiny: User's Manual

R20UW0031EJ0106 Rev.1.06 Page 19 of 93
Apr 01, 2014

6.1 Definition of LAN port number
/**/
/************************ General definition ********/
/**/
/* Number of LAN port, Number of Serial port */
const UB _t4_channel_num = 1; / If user uses PPP, this value can be set "1"
only. */

Fig 3. Definition of LAN port number (from config_tcpudp.c)

Please set the LAN port number (=1) to the variable _t4_channel_num

Do not set other value to the _t4_channel_num

Renesas microcomputer TCP/IP for Embedded system M3S-T4-Tiny: User's Manual

R20UW0031EJ0106 Rev.1.06 Page 20 of 93
Apr 01, 2014

6.2 Definition of TCP reception points
/**/
/*********************** TCP-related definition **************************/
/**/

/** Definition of TCP reception point (only port number needs to be set) ***/
T_TCP_CREP tcp_crep[] =
{
/* {attribute of reception point, {local IP address, local port number}} */
 { 0x0000, { 0, 1024 }}, /* TCP reception point ID: 1, port number: 1024 */
 { 0x0000, { 0, 1025 }}, /* TCP reception point ID: 2, port number: 1025 */
};
/* Total number of TCP reception points */
const H __tcprepn = sizeof(tcp_crep)/sizeof(T_TCP_CREP);

Fig 4. Definition of TCP reception points (excerpt from tcpudp_config.c)

The TCP reception points are statically generated by using T_TCP_CREP structures (see Chapter 4). An example
definition of TCP reception points is shown in Fig 4.

The current version of the software requires that of these three fields, only the local port number should be set.

The attribute is not supported, so that the value set for it has no effect.

T4 has some TCP reception points already specified in the configuration. But the required RAM size increases while
using these reception points. These TCP reception points have the same reception port number with different reception
points.

The local IP address is obtained from the local IP address that is set in the variable tcpudp_env when initializing the
T4, so that the value set for it in the configuration file has no effect.

The variable __tcprepn does not need to be changed, because the total number of TCP reception points is automatically
set.

When this definition is made, TCP-based connection from connection request wait with a specified port number is
possible. Even when not using TCP, be sure to set at least one reception point.

Renesas microcomputer TCP/IP for Embedded system M3S-T4-Tiny: User's Manual

R20UW0031EJ0106 Rev.1.06 Page 21 of 93
Apr 01, 2014

6.3 Definition of TCP communication end points
/**/
/************************* TCP-related definition **************************/
/**/
 :
 :
/*** Definition of TCP communication end point
(only receive window size needs to be set) ***/
T_TCP_CCEP tcp_ccep[] =
{
 /* { attribute of TCP communication end point,
 top address of transmit window buffer, size of transmit window buffer,
 top address of receive window buffer, size of receive window buffer,
 address of callback routine }
 */
{ 0, 0, 0, 0, 64, callback } /* TCP communication end point ID: 1 */
{ 0, 0, 0, 0, 64, callback } /* TCP communication end point ID: 2 */

};
/* Total number of TCP communication end points */
const H __tcpcepn = sizeof(tcp_ccep)/sizeof(T_TCP_CCEP);

Fig 5 Definition of the TCP communication end points (excerpt from config_tcpudp.c)
The TCP communication end points are statically generated by using T_TCP_CCEP structures (see Chapter 4). An
example definition of TCP communication end points is shown in Fig 5.

A definition of one TCP communication end point consists of six fields, as shown below.

{ TCP communication endpoint attribute (LAN port number) top address of transmit window, size of transmit window,
top address of receive window, size of receive window, address of callback routine (or callback function name) }

The current version of the software requires that of these six fields, only the size of receive window should be set.
Please set the 0 to the TCP communication endpoint attribute. The others are not supported, so that the values set for
them have no effect, If non-blocking call is to be used, then the "callback" field needs to be specified.

The top address of receive window is automatically assigned when initializing the T4, so that the value set for it in the
configuration file has no effect.

Only one TCP communication end point can set.

If callback is to be used, then set the callback routine address in the field "callback". If callback is not to be used, set the
"callback" field to "0". T4 has some TCP communication end points already specified in the configuration. But the
required RAM size increases while using these communication end points.

The variable __tcpcepn does not need to be changed, because the total number of TCP communication end points is
automatically set.

When this definition is made, TCP-based establishment of a connection, data transmission/reception and closing of a
connection are possible. Even when not using TCP, be sure to set at least one communication end point.

Renesas microcomputer TCP/IP for Embedded system M3S-T4-Tiny: User's Manual

R20UW0031EJ0106 Rev.1.06 Page 22 of 93
Apr 01, 2014

6.4 Definition of UDP communication end points
/**/
/************************** UDP-related definition ************************/
/**/
/*** Definition of UDP communication end point ***/
T_UDP_CCEP udp_ccep[] =
{
 /* Only setting port number */
 { 0x0000, { 0, 1365 }, callback }, /* ID: 1, port number: 1365 */
 { 0x0000, { 0, 1366 }, callback }, /* ID: 2, port number: 1366 */
};
 /* Total number of UDP communication end points */
const H __udpcepn = (sizeof(udp_ccep)/sizeof(T_UDP_CCEP));

Fig 6 Definition of UDP communication end points (excerpt from config_tcpudp.c)

The UDP communication end points are statically generated by using T_UDP_CCEP structures (see Chapter 4). An
example definition of UDP communication end point is shown in Fig 6.

A definition of one UDP communication end point consists of four fields, as shown below.

 { UDP communication endpoint attribute (LAN port number), {local IP address, local port number}, address
of callback routine (or callback function name)}

The current version of the software requires that of these four fields, the UDP communication endpoint attribute (LAN
port number) and local port number and address of callback routine should be set. UDP communication endpoint
attribute.

The local IP address is obtained from the local IP address that is set in the variable tcpudp_env (see Fig and Fig)
when initializing the T4, so that the value set for it in the configuration file has no effect.

When using callback feature be sure to set the address of the callback function in the address of callback routine. When
not using, be sure to set 0 in there.

Only one UDP communication end point cant set.

The variable __udpcepn does not need to be changed, because the total number of UDP communication end points is
automatically set.

When this definition is made, UDP-based data transmission or reception with a specified port number is possible. Even
when not using UDP, be sure to set at least one communication end point.

Renesas microcomputer TCP/IP for Embedded system M3S-T4-Tiny: User's Manual

R20UW0031EJ0106 Rev.1.06 Page 23 of 93
Apr 01, 2014

6.5 Definition of IP header-related
/*** TTL for multicast transmission ***/
const UB __multi_TTL = 1;

Fig 7. Definition of IP header-related (excerpt from config_tcpudp.c)

For the variable __multi_TTL, set the TTL of the IP datagram to be sent to the multicast destination. The TTL is an
element of the IP header and represent the number of routers the IP datagram can pass through.

If the IP datagram is sent to other than the multicast destination, the default value (= 80) is set in the TTL of the IP
header.

Since the protocol for the IP datagram addressed to the multicast destination normally is UDP, this set value is used
when sending the UDP data addressed to the multicast destination. However, because the parameters specified in APIs
basically are not checked for correctness in the T4, if the remote IP address is set in the multicast address in a
connection requesting API of TCP, the improper TCP packet addressed to the multicast destination will be sent.

Do not set the multicast address as the remote IP address of TCP.

Renesas microcomputer TCP/IP for Embedded system M3S-T4-Tiny: User's Manual

R20UW0031EJ0106 Rev.1.06 Page 24 of 93
Apr 01, 2014

6.6 Definition of TCP options
/**/
/************************** TCP-related definition **************************/
/**/
 :
 :
/*** TCP MSS ***/
const UH _tcp_mss = 64; /* Maximum: 1,460 bytes */

/*** Initial value of sequence number (Set any value other than 0) ***/
UW _tcp_initial_seqno = 1;

/*** 2MSL wait time (unit: 10 ms) ***/
const UH _tcp_2msl = (1*60*1000/10); /* 1 minute */

/*** Maximum value of retransmission timeout period (unit: 10 ms) ***/
const UH _tcp_rt_tmo_rst = (10*60*1000/10); /* 10 minute */

/*** Transmit for delay ack (ON=1/OFF=0) ***/
UB _tcp_dack = 1;

Fig 8. Definition of TCP options (excerpt from config_tcpudp.c)

An example definition of TCP options is shown in Fig 8.

In the definition of TCP options, there are several items that need to be set. These include the default value of MSS
(Maximum Segment Size), whether to send delayed ACK, the initial value of sequence number, a 2 MSL wait time and
the maximum value of retransmission timeout period. Each of these options is detailed below.

6.6.1 MSS for TCP
For the variable _tcp_mss, set the maximum number of data (bytes) that can be transmitted in one TCP segment during
TCP communication. This does not include the header size. It can be set in the range of 1 to 1,460. If any value other
than that is set, the RFC default value of 536 is assumed.

This value is transmitted to the other node of communication as a TCP header option when a TCP connection is
established. If this option is sent from the other node too, a smaller value of the two is used thereafter as the MSS in this
connection. If this option is not sent from the other node, the default value 536 is assumed to have been sent from the
other node.

However, if the receive window size at the communication end point used is smaller than _tcp_mss, the receive
window size is transmitted as the MSS to the other node.

Furthermore, because the T4 does not support IP fragments, if the application is likely to use a communication path
with small MTU to communicate, _tcp_mss must be set to a size smaller than the MTU.

6.6.2 Initial value of sequence number
Set the initial value of the sequence number of the TCP segment to transmit. Set a positive value (not including 0) in the
variable _tcp_initial_seqno.

Furthermore, this value must be located in the RAM area.

6.6.3 2-MSL wait time
Set the length of time for which the program stays in a TIME_WAIT state during TCP state transition. The time must be
set in 10-ms units. In the above example setting,

(1 * 60 * 1000 / 10) * 10 ms = 60,000 ms = 60 sec = 1 minute

Renesas microcomputer TCP/IP for Embedded system M3S-T4-Tiny: User's Manual

R20UW0031EJ0106 Rev.1.06 Page 25 of 93
Apr 01, 2014

6.6.4 Maximum value of retransmission timeout period
Set the length of time for TCP retransmission. When this set time is reached as a retransmission has been performed
repeatedly after transmitting the first segment, a reset segment is transmitted to the other node of communication to
close the connection.

The time must be set in 10-ms units. In the above example setting,

(10 * 60 * 1000 / 10) * 10 ms = 600,000 ms = 600 sec = 10 minutes
The interval time from the first transfer to the successive retransmissions attempted thereafter is exponentially extended
by an exponential backoff algorithm. The maximum value for this interval time is 60 seconds. If the interval time in a
given retransmission reaches 60 seconds, the subsequent retransmissions are performed at intervals of 60 seconds
repeatedly.

6.6.5 Presence of TCP multiple transmit for Delay ACK
Specify to variable _ tcp_dack whether to transmit the TCP multiple corresponding to delay ACK reception when T4
transmit by TCP. Specify "1" for variable _ tcp_dack when T4 transmit the TCP multiple. Moreover, specify "0" for
variable _ tcp_dack when you invalidate this function. When communicating with an effective other party of the
communication to be late ACK when the TCP multiple is transmitted, useless waiting time is not generated.

RFC provides for the rule (Nagle algorithm) to bring the data transmission together. There is a possibility of waiting for
the receiving side for 0.5 seconds or less when the sending end transmits only one TCP packet to this. (0.2 seconds in
case of Windows)

Wait for ACK after dividing data as follows by the transmission data length and MSS when making this function
effective. Moreover, the transmission data length is adjusted according to the size of the window on the receiving side.

The MSS byte is transmitted twice and the ACK waiting:

(remainder transmission data length >= MSS * 2)
The MSS byte is transmitted once and (remainder transmission data length- MSS) byte is transmitted once and
ACK waiting.

(MSS * 2 > remainder transmission data length > MSS)
(remainder transmission data length- MSS) byte is transmitted once and 1byte is transmitted once and ACK
waiting.

MSS >= remainder transmission data length > 1
1 byte is transmitted once and the ACK waiting

remainder transmission data length = 1.

*Data can transmit efficiently when the data length specified by transmission API specifies the twice MSS.

*T4 comes to wait for ACK at each data transmission when the tcp_dack value is made "0".

*Do not change the tcp_dack value with the TCP connection has established it.

Renesas microcomputer TCP/IP for Embedded system M3S-T4-Tiny: User's Manual

R20UW0031EJ0106 Rev.1.06 Page 26 of 93
Apr 01, 2014

6.7 UDP option settings
/*** Behavior of UDP zero checksum ***/
const UB _udp_enable_zerochecksum = 0; /* 0 = disable, other =
enable */

Fig 9. UDP option settingus (excerpt from config_tcpudp.c)

6.7.1 UDP zero checksum definition
This variable decides operation, when T4 receives UDP packets that have zero checksum.

 udp_enable_zerochecksum == 0 accept zero checksum packet

 udp_enable_zerochecksum != 0 refuse zero checksum packet

Renesas microcomputer TCP/IP for Embedded system M3S-T4-Tiny: User's Manual

R20UW0031EJ0106 Rev.1.06 Page 27 of 93
Apr 01, 2014

6.8 Local node settings (Ethernet)
/**/
/************************* IP-related definition *********************/
/**/
const UH _ip_tblcnt = 3;
#define MY_IP_ADDR 192,168,0,3 /* Local IP address */
#define GATEWAY_ADDR 0,0,0,0 /* Gateway address (invalid if all 0s)*/
#define SUBNET_MASK 255,255,255,0 /* Subnet mask */
 :
 :
TCPUDP_ENV tcpudp_env = {
 {MY_IP_ADDR}, /* IP address */
 {SUBNET_MASK}, /* Subnet mask */
 {GATEWAY_ADDR} /* Gateway address */
};
/**/
/************************** Driver-related definition ********************/
/**/
/*--*/
/* Set of Ethernet-related */
/*--*/
/* Local MAC address (Set all 0s when unspecified) */
#define MY_MAC_ADDR 0x20,0x00,0x00,0x00,0x00,0x00

UB _myethaddr[6]={MY_MAC_ADDR}; /* MAC address */

Fig 10. Local node settings when using Ethernet (excerpt from config_tcpudp.c)
Set the IP address, subnet mask, gateway address and Ethernet address (MAC address) as the information associated
with the local node when using Ethernet. An example definition is shown in Fig 10.

Local node settings consist of a TCPUDP_ENV structure including the three fields shown below (see Chapter 4) and an
Ethernet address (MAC address).

tcpudp_env = { IP address, subnet mask, gateway address }
_myethaddr = { MAC address }

Definitions by define may also be used for each information, as shown in Fig 10. Separate the value for each defined
information with a comma.

The IP address and subnet mask must always be set.

When using any gateway address, set the address that is used. When not using, set all 0s like {0, 0, 0, 0}. Only one
gateway address can be set.

When specifying MAC address for the Ethernet controller in a program, set the MAC address that is to be specified. If
the MAC address of the Ethernet controller is automatically set by EEPROM, etc., set all 0s like {0, 0, 0, 0, 0, 0}.

Furthermore, tcpudp_env and _myethaddr must be located in the RAM area.

The number of cash entries of ARP used by T4 is set to variable_ip_tblcnt. In T4, one cash entry per host who
communicates is used.

The value more than "the number of hosts which may communicate simultaneously + 1" is recommended. When a
value smaller than "the number of hosts which may communicate simultaneously" is set, the program may behave
erratically. For example, when using TCP and UDP simultaneously and communicating with different host, seT4 or
more values.

Moreover, the maintenance period of a cash entry is 10 minutes. So, when communicating with many hosts frequently
in the meantime, if the value more than the number of hosts is set, communication efficiency will go up. For example,
when communicating by UDP with four hosts and order, if the four or less number of cash entries is set, solution of
ARP is needed each time.

Renesas microcomputer TCP/IP for Embedded system M3S-T4-Tiny: User's Manual

R20UW0031EJ0106 Rev.1.06 Page 28 of 93
Apr 01, 2014

6.9 Local node settings (PPP)
/**/
/***************** PPP definition ************************/
/**/
UB ppp_mode = PPP_MODE_CLIENT;
//UB ppp_mode = PPP_MODE_SERVER;

const UH ppp_auth = AUTH_PAP;
/* PAP = AUTH_PAP, CHAP with MD5 = AUTH_CHAP, NONE = AUTH_NON */

/**/
/***************** Driver-related definition (for PPP server)***************/
/**/
UB user1_name[] = "abcde";
UB user1_passwd[] = "abc00";
UB user2_name[] = "xxx";
UB user2_passwd[] = "yyy";
UB *user_table[] = { /* user authentication data table */
 user1_name, user1_passwd,
 user2_name, user2_passwd,
};
H __usern = sizeof(user_table)/sizeof(UB*)/2; /* Number of user */
UB client_ip_address[] = {192,168,0,100}; /* IP address that PPP server
allocates */
UB serverName[] = "T4 PPP SERVER";
UB serverName_len = sizeof(serverName)-1;

/**/
/********************* Driver-related definition (for PPP client) **********/
/**/
UB user_name[6] = "abcde"; /* user name */
UB user_passwd[6] = "abc00"; /* password */

/* Dial up-related setting */
const UB peer_dial[] = "0,123"; /* Destination telephone number */
const UB at_commands[] = "ATW2S0=2&C0&D0&S0M0X3"; /* Modem initialization
command */

Fig 11. Local node settings when using PPP (excerpt from config_tcpudp.c)

Renesas microcomputer TCP/IP for Embedded system M3S-T4-Tiny: User's Manual

R20UW0031EJ0106 Rev.1.06 Page 29 of 93
Apr 01, 2014

6.9.1 Local node settings (PPP client)
Set the IP address, PAP-related items and dial-up related items as the information associated with the local node when
using PPP client. An example definition is shown in Fig11.

To set the IP address, use the TCPUDP_ENV structure shown below (see Chapter 4) as in the case of Ethernet. For the
subnet mask and gateway address, set all 0s.

 tcpudp_env = { IP address, subnet mask, gateway address }
Definitions by define may also be used, as shown in Fig 11. Separate each specified value with a comma. The variable
tcpudp_env must be located in the RAM area. Using T4 as a PPP client, IP addresses are requested to be assigned by
the PPP server, set all 0s for the local IP address like {0, 0, 0, 0}, as shown in Fig . Set "PPP_MODE_CLIENT" to
ppp_mode variable.

To request a specific IP address from the PPP server, set the IP address to request. However, if the PPP server does not
approve the IP address requested by the PPP client, the local IP address is one that is assigned by the PPP server.

When IP addresses are assigned by the PPP server, the IP address in the variable tcpudp_env is updated to one that has
been assigned by the PPP server.

Although the subnet mask originally has no effect in PPP, the T4 uses a subnet mask to check to see if the local and
remote node belong to the same network. Therefore, if the subnet mask is all 0s, communication can be performed
normally; otherwise, an error will be returned to the API, making it incapable of communication.

When PAP or CHAP are used as a means of authentication, the user name and password must be set. Therefore, set
AUTH_PAP or AUTH_CHAP_MD5 in the variable ppp_auth, a user name in the variable user_name and a
password in the variable user_passwd.

If not used for authentication, set AUTH_NON in the variable ppp_auth. In this case, the variables user_name and
user_passwd do not need to be set values. (The set values, if any, are ignored.)

6.9.2 Local node settings (PPP server)
This section explains difference of PPP client.

Set "PPP_MODE_SERVER" to ppp_mode variable. T4 allocates IP address that specified client_ip_address variable.
(PPP client that connects in same time is 1).

When PAP or CHAP are used as a means of authentication, the user name and password must be set. Therefore, set
AUTH_PAP or AUTH_CHAP in the variable ppp_auth, a user name and password in the variable user_table.

 If not used for authentication, set AUTH_NON in the variable ppp_auth. In this case, the variable user_table does not
need to be set values. (The set values, if any, are ignored.)

6.9.3 Common settings for modem (PPP server/PPPclient)
The dial-up related definition requires setting a destination telephone number and modem initialization commands.
Therefore, set a destination telephone number in the variable peer_dial and modem initialization commands in the
variable at_commands. Refer to the user's manual of your modem for details about the modem initialization command.

Renesas microcomputer TCP/IP for Embedded system M3S-T4-Tiny: User's Manual

R20UW0031EJ0106 Rev.1.06 Page 30 of 93
Apr 01, 2014

7. T4 Configuration File (Several LAN ports)
Define TCP reception points, TCP communication end points, UDP communication end points, TCP options and local
node settings (Ethernet or PPP). These definitions can be made in an application program providing that they are set
before initializing the T4. However, all items must be set regardless of how they will be used.

Each of the following definitions is explained by using the configuration file config_tcpudp.c as an example.

Please refer to the section 6 if you use PPP.

Renesas microcomputer TCP/IP for Embedded system M3S-T4-Tiny: User's Manual

R20UW0031EJ0106 Rev.1.06 Page 31 of 93
Apr 01, 2014

7.1 LAN port number definition
/**/
/************************ General definition ********/
/**/
/* Number of LAN port, Number of Serial port */
const UB _t4_channel_num = 2; /* If user uses PPP, this value can be set "1"
only. */

Fig 12. LAN port number definition (from config_tcpudp.c)

Please set the LAN port numbers to the variable _t4_channel_num

Do not set 0 value to the _t4_channel_num

Renesas microcomputer TCP/IP for Embedded system M3S-T4-Tiny: User's Manual

R20UW0031EJ0106 Rev.1.06 Page 32 of 93
Apr 01, 2014

7.2 Definition of TCP reception points
/**/
/*********************** TCP-related definition **************************/
/**/

/*** Definition of TCP reception point (only port number needs to be set)
***/
T_TCP_CREP tcp_crep[] =
{
 /* { attribute of reception point, {local IP address, local port number}} */
 { 0x0000, { 0, 1024 }},
 { 0x0000, { 0, 1025 }},
 { 0x0000, { 0, 1026 }},
 { 0x0000, { 0, 1027 }},
};

/* Total number of TCP reception points */
const H __tcprepn = sizeof(tcp_crep) / sizeof(T_TCP_CREP);

Fig 13. Definition of TCP reception points (excerpt from tcpudp_config.c)

The TCP reception points are statically generated by using T_TCP_CREP structures (see Chapter 4). An example
definition of TCP reception points is shown in Fig 13.

Please refer to the section 6.2. to know option variables.

Renesas microcomputer TCP/IP for Embedded system M3S-T4-Tiny: User's Manual

R20UW0031EJ0106 Rev.1.06 Page 33 of 93
Apr 01, 2014

7.3 Definition of TCP communication end points
/**/
/************************* TCP-related definition **************************/
/**/
 :
 :
/*** Definition of TCP communication end point
(only receive window size needs to be set) ***/
T_TCP_CCEP tcp_ccep[] =
{
/* { attribute of TCP communication end point,
 top address of transmit window buffer, size of transmit window buffer,
 top address of receive window buffer, size of receive window buffer,
 address of callback routine }
*/
{ 0, 0, 0, 0, 64, callback } /* TCP communication end point ID: 1 */
{ 1, 0, 0, 0, 64, callback } /* TCP communication end point ID: 2 */
{ 0, 0, 0, 0, 64, callback } /* TCP communication end point ID: 3 */
{ 1, 0, 0, 0, 64, callback } /* TCP communication end point ID: 4 */
};
 /* Total number of TCP communication end points */
const H __tcpcepn = sizeof(tcp_ccep)/sizeof(T_TCP_CCEP);

Fig 14. Definition of the TCP communication end points (excerpt from config_tcpudp.c)
The TCP communication end points are statically generated by using T_TCP_CCEP structures (see Chapter 4). An
example definition of TCP communication end points is shown in Fig 14.

A definition of one TCP communication end point consists of six fields, as shown below.

{ TCP communication endpoint attribute (LAN port number), top address of transmit window, size of transmit window,
top address of receive window, size of receive window, address of callback routine (or callback function name) }

The current version of the software requires that of these six fields, only the size of receive window should be set. The
others are not supported, so that the values set for them have no effect, If non-blocking call is to be used, then the
"callback" field needs to be specified.

Please set LAN port number to the field of the TCP communication endpoint (LAN port number). This value will
through to the Ethernet Driver Interface. Please use this value in Ethernet driver.

This value's maximum limit is "LAN port number -1"

e top address of receive window is automatically assigned when initializing the T4, so that the value set for it in the
configuration file has no effect.

If callback is to be used, then set the callback routine address in the field "callback". If callback is not to be used, set the
"callback" field to 0. T4 has some TCP communication end points already specified in the configuration. But the
required RAM size increases while using these communication end points.

The variable __tcpcepn does not need to be changed, because the total number of TCP communication end points is
automatically set.

When this definition is made, TCP-based establishment of a connection, data transmission/reception and closing of a
connection are possible. Even when not using TCP, be sure to set at least one communication end point.

Renesas microcomputer TCP/IP for Embedded system M3S-T4-Tiny: User's Manual

R20UW0031EJ0106 Rev.1.06 Page 34 of 93
Apr 01, 2014

7.4 Definition of UDP communication end points
/**/
/************************** UDP-related definition ************************/
/**/
/*** Definition of UDP communication end point ***/
T_UDP_CCEP udp_ccep[] =
{
 /* Only setting port number */
 { 0, { 0, 1365 }, callback }, /* ID: 1, port number: 1365 */
 { 1, { 0, 1366 }, callback }, /* ID: 2, port number: 1366 */
};
/* Total number of UDP communication end points */
const H __udpcepn = (sizeof(udp_ccep)/sizeof(T_UDP_CCEP));

Fig 15. Definition of UDP communication end points (excerpt from config_tcpudp.c)
The UDP communication end points are statically generated by using T_UDP_CCEP structures (see Chapter 4). An
example definition of UDP communication end point is shown in Fig 15.

A definition of one UDP communication end point consists of four fields, as shown below.

 { UDP communication endpoint attribute (LAN port number), {local IP address, local port number}, address
of callback routine (or callback function name)}

The current version of the software requires that of these four fields, the UDP communication endpoint attribute (LAN
port number), and local port number and address of callback routine should be set.

Please set LAN port number to the field of the UDP communication endpoint (LAN port number). This value will
through to the Ethernet Driver Interface. Please use this value in Ethernet driver.

This value's maximum limit is "LAN port number -1"

The local IP address is obtained from the local IP address that is set in the variable tcpudp_env (see Fig and Fig)
when initializing the T4, so that the value set for it in the configuration file has no effect.

When using callback feature be sure to set the address of the callback function in the address of callback routine. When
not using, be sure to set 0 in there.

Only one UDP communication end point cant set.

The variable __udpcepn does not need to be changed, because the total number of UDP communication end points is
automatically set.

When this definition is made, UDP-based data transmission or reception with a specified port number is possible. Even
when not using UDP, be sure to set at least one communication end point.

Renesas microcomputer TCP/IP for Embedded system M3S-T4-Tiny: User's Manual

R20UW0031EJ0106 Rev.1.06 Page 35 of 93
Apr 01, 2014

7.5 Definition of IP header-related
/*** TTL for multicast transmission ***/
const UB __multi_TTL[] = { 1, 1};

Fig 16. Definition of IP header-related (excerpt from config_tcpudp.c)

Please refer to the section 6.5 to know IP header definition.

Renesas microcomputer TCP/IP for Embedded system M3S-T4-Tiny: User's Manual

R20UW0031EJ0106 Rev.1.06 Page 36 of 93
Apr 01, 2014

7.6 Definition of TCP options
/**/
/************************** TCP-related definition **************************/
/**/
 :
 :
/*** TCP MSS ***/
const UH _tcp_mss[] = {64, 64}; /* Maximum: 1,460 bytes */

/*** Initial value of sequence number (Set any value other than 0) ***/
UW _tcp_initial_seqno[] = { 1, 1};

/*** 2MSL wait time (unit: 10 ms) ***/
const UH _tcp_2msl[] = {(1*60*1000/10), (1*60*1000/10)}; /* 1 minute */

/*** Maximum value of retransmission timeout period (unit: 10 ms) ***/
const UH _tcp_rt_tmo_rst[] = {(10*60*1000/10),(10*60*1000/10)};/* 10 minute
*/

/*** Transmit for delay ack (ON=1/OFF=0) ***/
UB _tcp_dack[] = {1, 1};

Fig 17. Definition of TCP options (excerpt from config_tcpudp.c)

An example definition of TCP options is shown in Fig 17.

Please refer to the section 6.5 to know option settings.

Renesas microcomputer TCP/IP for Embedded system M3S-T4-Tiny: User's Manual

R20UW0031EJ0106 Rev.1.06 Page 37 of 93
Apr 01, 2014

7.7 Definition of UDP options
/*** Behavior of UDP zero checksum ***/
const UB _udp_enable_zerochecksum[] = {0, 0}; /* 0 = disable, other = enable
*/

Fig 18. UDP option settings (excerpt from config_tcpudp.c)

7.7.1 UDP zero checksum definition
Please refer to the section 6.7.1 to know this settings.

Renesas microcomputer TCP/IP for Embedded system M3S-T4-Tiny: User's Manual

R20UW0031EJ0106 Rev.1.06 Page 38 of 93
Apr 01, 2014

7.8 Local node settings (Ethernet)
/**/
/************************* IP-related definition *********************/
/**/
const UH _ip_tblcnt[] = {3,3};
#define MY_IP_ADDR0 192,168,0,3 /* Local IP address */
#define GATEWAY_ADDR0 0,0,0,0 /* Gateway address (invalid if all 0s)*/
#define SUBNET_MASK0 255,255,255,0 /* Subnet mask */

#define MY_IP_ADDR1 192,168,0,10 /* Local IP address */
#define GATEWAY_ADDR1 0,0,0,0 /* Gateway address (invalid if all 0s)*/
#define SUBNET_MASK1 255,255,255,0 /* Subnet mask */
 :
 :
TCPUDP_ENV tcpudp_env[] =
{
 {{MY_IP_ADDR0},{SUBNET_MASK0},{GATEWAY_ADDR0}},
 {{MY_IP_ADDR1},{SUBNET_MASK1},{GATEWAY_ADDR1}}
};
/**/
/************************** Driver-related definition ********************/
/**/
/*--*/
/* Set of Ethernet-related */
/*--*/
/* Local MAC address (Set all 0s when unspecified) */
#define MY_MAC_ADDR0 0x20,0x00,0x00,0x00,0x00,0x00
#define MY_MAC_ADDR1 0x40,0x00,0x00,0x00,0x00,0x00

UB _myethaddr[][6]={ {MY_MAC_ADDR0}, {MY_MAC_ADDR1}};/* MAC address */

Fig 19. Local node settings when using Ethernet (excerpt from config_tcpudp.c)
Set the IP address, subnet mask, gateway address and Ethernet address (MAC address) as the information associated
with the local node when using Ethernet. An example definition is shown in Fig 19.

Local node settings consist of a TCPUDP_ENV structure including the three fields shown below (see Chapter 4) and an
Ethernet address (MAC address).

tcpudp_env ={ { IP address, subnet mask, gateway address }, {} }
_myethaddr ={ { MAC address }, {} }

Definitions by define may also be used for each information, as shown in Fig . Separate the value for each defined
information with a comma.

The IP address and subnet mask must always be set.

When using any gateway address, set the address that is used. When not using, set all 0s like {0, 0, 0, 0}. Only one
gateway address can be set.

When specifying MAC address for the Ethernet controller in a program, set the MAC address that is to be specified. If
the MAC address of the Ethernet controller is automatically set by EEPROM, etc., set all 0s like {0, 0, 0, 0, 0, 0}.

Furthermore, tcpudp_env and _myethaddr must be located in the RAM area.

The number of cash entries of ARP used by T4 is set to variable_ip_tblcnt. In T4, one cash entry per host who
communicates is used.

The value more than "the number of hosts which may communicate simultaneously + 1" is recommended. When a
value smaller than "the number of hosts which may communicate simultaneously" is set, the program may behave
erratically. For example, when using TCP and UDP simultaneously and communicating with different host, seT4 or
more values.

Renesas microcomputer TCP/IP for Embedded system M3S-T4-Tiny: User's Manual

R20UW0031EJ0106 Rev.1.06 Page 39 of 93
Apr 01, 2014

Moreover, the maintenance period of a cash entry is 10 minutes. So, when communicating with many hosts frequently
in the meantime, if the value more than the number of hosts is set, communication efficiency will go up. For example,
when communicating by UDP with four hosts and order, if the four or less number of cash entries is set, solution of
ARP is needed each time.

Renesas microcomputer TCP/IP for Embedded system M3S-T4-Tiny: User's Manual

R20UW0031EJ0106 Rev.1.06 Page 40 of 93
Apr 01, 2014

8. T4 Library functions
Table 3 lists the APIs that are supported by the T4. The TCP and UDP APIs each are compliant with ITRON TCP/IP
Specification. The number of APIs that can executed at the same time in the T4 is one for TCP and UDP
each.(excluding cancel API)

Table 3. List of T4 APIs

 T4 APIs C Language API
TCP Wait for Connection Request (Passive Open) tcp_acp_cep()
 Request Connection (Active Open) tcp_con_cep()
 Terminate data transmission tcp_sht_cep()
 Close communication end point tcp_cls_cep()
 Transmit data tcp_snd_dat()
 Receive data tcp_rcv_dat()
 TCP API cancel tcp_can_cep()
UDP Transmit packet udp_snd_dat()
 Receive packet udp_rcv_dat()
 UDP API cancel udp_can_cep()
TCP/UDP Callback (User defined function) callback()
PPP Open PPP ppp_open()
 Close PPP ppp_close()
 Refer PPP status ppp_status()
 Request PPP process ppp_api_req()
Initialization Get work memory size used tcpudp_get_ramsize()
 Open T4 library tcpudp_open()
Cyclic process TCP/IP protocol process _process_tcpip()
Termination
processing Close T4 library tcpudp_close()

Refer to Introduction Guide for the stack size of each APIs.
The following describes the data structures and macro definitions used in APIs. This is followed by
a detailed description of each API, which is given in the format shown below.

<Prototype>

Shows the API format.

<Explanation>

Shows the functionality and behavior of each API and the precautions to be observed when using API.

<Arguments>

Shows the meaning of parameters to the API and limitations on acceptable values.

<Return value>

Shows the type of value or error code returned by the API and the conditions under which an error occurs.

Renesas microcomputer TCP/IP for Embedded system M3S-T4-Tiny: User's Manual

R20UW0031EJ0106 Rev.1.06 Page 41 of 93
Apr 01, 2014

8.1 tcp_acp_cep
<Prototype>

 ER tcp_acp_cep(ID cepid, ID repid, T_IPV4EP *p_dstaddr, TMO tmout)

<Explanation>

This API waits for a connection request for the TCP reception point repid. When a connection request is
received, the API establishes a connection by using the TCP communication end point cepid and stores the IP
address and port number of the remote node which requested a connection in the area indicated by the
parameter p_dstaddr before returning that information to the task.

The API is in a wait state until a connection is established. A timeout period may be specified for this wait
state. An error code E_TMOUT is returned if a connection cannot be established within the specified time.

When a connection is established, the return value E_OK is returned. If a connection is not established, one of
the above error codes other than E_OK is returned depending on the cause of error. The cause of error is
indicated in () for each error code.

If the value "TMO_NBLK" is specified for "tmout, the API is a non-blocking call. This API does not have the
status "waiting for API end". Upon normal termination of non-blocking call, this API returns value
"E_WBLK". When connection is established, callback routine is called. Callback routine has three parameters
viz.,"TCP communication end point number" , "function code = TFN_TCP_ACP_CEP" , "pointer of error
code".

If anything else apart from "TMO_NBLK is specified in the callback routine, this API returns E_PAR.

<Arguments>

Argument Type Explanation
cepid ID Specify the ID of a TCP communication end point ("1"~ "30")
repid ID Specify the ID of a TCP reception point ("1"~ "30")
p_dstaddr T_IPV4EP Get the remote IP address and port number

Get the IP address and port number of the remote node that
requested a connection

tmout TMO Specify a timeout .
Positive value: Timeout period for waiting until a connection is

 completed.The unit of time is 10 ms
TMO_FEVR: Keeps waiting until a connection is completed

(waiting forever)
TMO_NBLK: non-blocking call

<Return value>

Return Value Explanation
E_OK Terminated normally (connection established)
E_PAR Incorrect parameter error (invalid "tmout" value)
E_QOVR this error occurs when the called API does not end
E_OBJ Object status error (communication end point ID in use is specified)
E_TMOUT Time out (time set in tmout expired)
E_WBLK non-blocking call is accepted

Renesas microcomputer TCP/IP for Embedded system M3S-T4-Tiny: User's Manual

R20UW0031EJ0106 Rev.1.06 Page 42 of 93
Apr 01, 2014

8.2 tcp_con_cep
<Prototype>

ER tcp_con_cep(ID cepid, T_IPV4EP *p_myaddr, T_IPV4EP *p_dstaddr, TMO tmout)

<Explanation>

This API requests a connection to the IP address and port number of the other node to which to connect by
using the TCP communication end point cepid, and keeps waiting until a connection is completed. Although
the API remains waiting until a connection is established, a timeout period may be specified for this wait state.

An error code E_TMOUT is returned if a connection cannot be established within the specified time.

If the connection request is canceled due to time out or if the connection request is rejected for reasons that for
example, a port number unsupported by the remote node is specified, the communication end point cepid
returns to an "unused" state.

When this API is called, whether specified communication end point is using is checked first.

The local IP address that is set in the variable tcpudp_env is assumed for the local IP address.

If any value other than 0 is specified for the local port number, this value is set. On the other hand, if
TCP_PORTANY is specified for the local port number, the API assigns a port number from within the range
of numbers 1,024 to 5,000 in the T4.

If NADR is specified for the local IP address and port number p_myaddr, the API assigns the IP address that is
set in the variable tcpudp_env for the local IP address, and for the local port number, it assigns a port number
from within the range of numbers 1,024 to 5,000 in the T4.

When a connection is established, the return value E_OK is returned. If a connection is not established, one of
the above error codes other than E_OK is returned depending on the cause of error. The cause of error is
indicated in () for each error code.

If the value "TMO_NBLK" is specified for "tmout, the API is a non-blocking call. This API does not have the
status "waiting for API end". Upon normal termination of non-blocking call, this API returns value
"E_WBLK". When connection is established, callback routine is called. Callback routine has three parameters
viz.,"TCP communication end point number","function code= TFN_TCP_CON_CEP","pointer of error code".

If anything else apart from "TMO_NBLK" is specified in the callback routine, this API returns E_PAR.

<Arguments>

Argument Type Explanation
cepid ID Specify the ID of a TCP communication end point ("1"~ "30")
p_myaddr T_IPV4EP Specify the local IP address and port number
p_dstaddr T_IPV4EP Specify the remote IP address and port number
tmout TMO Specify a timeout .

Positive value: Timeout period for waiting until a connection is
 completed.The unit of time is 10 ms
TMO_FEVR: Keeps waiting until a connection is completed
(waiting forever)

<Return value>

Return Value Explanation
E_OK Terminated normally (connection established)
E_PAR Incorrect parameter error (invalid "tmout" value)
E_QOVR this error occurs when the called API does not end
E_OBJ Object status error (communication end point ID in use is specified)
E_TMOUT Time out (time set in tmout expired)
E_WBLK non-blocking call is accepted

Renesas microcomputer TCP/IP for Embedded system M3S-T4-Tiny: User's Manual

R20UW0031EJ0106 Rev.1.06 Page 43 of 93
Apr 01, 2014

Hints

 Please specifyIP address and port number to structure "T_IP_V4EP" to this function.

 example : connect to IP address 192.168.123.250 , port 80.

 T_IPV4EP dst, src;

 dst.ipaddr = 0xc0a87bfa; // 192 = 0xc0, 168 = 0xa8, 123= 0x7b, 250 = 0xfa

 dst.portno = 80;

 tcp_con_cep(1, &src, &dst, TMO_NBLK);

Renesas microcomputer TCP/IP for Embedded system M3S-T4-Tiny: User's Manual

R20UW0031EJ0106 Rev.1.06 Page 44 of 93
Apr 01, 2014

8.3 tcp_sht_cep
<Prototype>

 ER tcp_sht_cep(ID cepid)

<Explanation>

This API terminates data transmission as a preparatory procedure before closing a connection to the TCP
communication end point cepid. More specifically, it sends FIN upon receiving ACK for the transmitted data.

Because this API only prepares for disconnection processing, it does not enter a wait state.

After this API is called, no data can be transmitted to the TCP communication end point cepid. If transmission
is attempted, an error code E_OBJ is returned. Data can be received though.

When a data transmission terminating procedure is completed, a value E_OK is returned. If failed to terminate
data transmission, one of the above error codes other than E_OK is returned depending on the cause of error.
The cause of error is indicated in () for each error code.

In the case, Specified communication end point number (cepid) does not have a callback routine specified in
configuration, this API call is "blocking call.

In the case, Specified communication end point number (cepid) has a callback routine specified in
configuration, this API call is "non-blocking call.

This API returns on transmission of a shutdown packet.

If anything else apart from "TMO_NBLK is specified in the callback routine, this API returns E_NOSPT

<Arguments>

Argument Type Explanation
cepid ID Specify the ID of a TCP communication end point ("1"~ "30")

<Return value>

Return Value Explanation
E_OK Terminated normally (connection established)
E_OBJ Object status error (communication end point ID in use is specified)
E_NOSPT called in callback routine
E_WBLK non-blocking call is accepted

Renesas microcomputer TCP/IP for Embedded system M3S-T4-Tiny: User's Manual

R20UW0031EJ0106 Rev.1.06 Page 45 of 93
Apr 01, 2014

8.4 tcp_cls_cep
<Prototype>

 ER tcp_cls_cep(ID cepid, TMO tmout)
<Explanation>

This API disconnect for the TCP communication end point cepid. After this API is called, the data transmitted
from the other node is discarded.

If the connection closing processing is canceled due to time out, RST is sent from the TCP communication end
point specified in this API to forcibly close the connection. In this case, because the connection is not closed
normally, an error code E_TMOUT is returned.

The API is a non-blocking call. This API does not have the status "waiting for API end". Upon normal
termination of non-blocking call, this API returns value "E_WBLK". When connection is closed, callback
routine is called. Callback routine has three parameters viz.,"TCP communication end point number","function
code=TFN_TCP_CLS_CEP","pointer of error code"

If anything else apart from "TMO_NBLK is specified in the callback routine, this API returns E_PAR

This API waits until the communication end point enters an "unused" state regardless of whether disconnected
normally or forcibly before it returns, the TCP communication end point cepid can be used immediately after
returning from the API. The communication end point does not enter an "unused" state unless a connection is
completely closed. According to TCP/IP standards, the communication end point remains in a TIME_WAIT
state for some time which normally is several minutes until a connection is completely closed. The
TIME_WAIT time, 2MSL, can be set in the T4 configuration file (see Chapter 6).

When a connection is closed normally, a value E_OK is returned. If forcibly closed, an error code E_TMOUT
is returned. When one of these codes is returned, the specified TCP communication end point is in an "unused"
state because a connection has been completely closed. If the TCP communication end point specified in this
API does not connect, E_OBJ is returned.

There is the case continuing API process, when connection line has abnormally status after tcp_sht_cep().

If the connection line has not terminated normally after tcp_sht_cep(), it is recommended that the API
tcp_cls_cep() be called with timeout parameter, or as a non-blocking call.

[(Supplements)]

In ITRON specifications, if data transmission is not completed yet, the API waits until the transmission
finishes, and disconnects by sending FIN. In the T4, because multiple APIs cannot be executed at the same
time, data transmission is already completed by the time this API is issued. Therefore, the API will not wait
until FIN segment is sent.

<Arguments>

Argument Type Explanation
cepid ID Specify the ID of a TCP communication end point ("1"~ "30")
tmout TMO Specify a timeout .

Positive value: Timeout period for waiting until a connection is
 completed.The unit of time is 10 ms
TMO_FEVR: Keeps waiting until a connection is completed
 (waiting forever)
TMO_NBLK: non-blocking call

<Return value>

Return Value Explanation
E_OK Terminated normally (connection established)
E_PAR Incorrect parameter error (invalid "tmout" value)
E_QOVR this error occurs when the called API does not end
E_OBJ Object status error (specified communication end point is unconnected)
E_TMOUT Time out (time set in tmout expired / connection is forcibly closed)
E_WBLK non-blocking call is accepted

Renesas microcomputer TCP/IP for Embedded system M3S-T4-Tiny: User's Manual

R20UW0031EJ0106 Rev.1.06 Page 46 of 93
Apr 01, 2014

8.5 tcp_snd_dat
<Prototype>

 ER tcp_snd_dat(ID cepid, VP data, INT len, TMO tmout)

<Explanation>

This API transmits data from the TCP communication end point cepid. When transmitted normally, it returns
the transmitted data size.

The T4 differs from ITRON TCP Specification in several points for reasons of increased RAM usage
efficiency and transmission speed. In this library, the area in which transmit data is stored (hereafter called the
user transmit buffer) serves as the transmit window defined in ITRON TCP Specification. Similarly, the
transmit window size equals the transmit data length, and the size varies with the usage condition of this API.

In ITRON Specification, the task returns from the API when it finished copying data from the user transmit
buffer to the transmit window. In this API, however, the task returns from the API when it received ACK for
the data it transmitted. More specifically, if a TCP-level segment division occurs for reasons of the MSS or the
receive window size of the other node, the task returns from the API only when ACK is received for all of the
transmitted data, and not for the first divided data transmitted.

When data has been transmitted normally, the transmitted data size (= value of len) is returned. If failed to
transmit, one of the above error codes is returned depending on the cause of error. The cause of error is
indicated in () for each error code.

The API is a non-blocking call. This API does not have the status "waiting for API end". Upon normal
termination of non-blocking call, this API returns value E_WBLK". When transmission is completed, callback
routine is called. Callback routine has three parameters viz.,"TCP communication end point number","function
code= TFN_TCP_SND_DAT","pointer of error code".

If anything else apart from "TMO_NBLK is specified in the callback routine, this API returns E_PAR.

[(Supplements)]

In ITRON specifications, the size of transmit data is determined by the size of free space in the transmit
window. Therefore, the value returned by the API when it normally terminated does not always match the third
parameter len. This requires caution when the API is ported to the protocol stack compliant with ITRON
TCP/IP API specifications other than the T4.

<Arguments>

Argument Type Explanation
cepid ID Specify the ID of a TCP communication end point

("1"~ any valid configration value)
data VP Specify the top address of transmit data

The top address of the data to be sent by the user
Len INT pecify the length of transmit data Positive value
tmout TMO Specify a timeout .

Positive value: Timeout period for waiting until it finishes
 sending. The unit of time is 10 ms
TMO_FEVR: Keeps waiting until it finishes sending
 (waiting forever)
TMO_NBLK: non-blocking call

<Return value>

Return Value Explanation
Positive value Terminated normally (transmitted data size in bytes)
E_PAR Incorrect parameter error (invalid "tmout" value)
E_QOVR this error occurs when the called API does not end
E_OBJ Object status error (specified communication end point is unconnected)
E_TMOUT Time out (time set in tmout expired / connection is forcibly closed)
E_WBLK non-blocking call is accepted

Renesas microcomputer TCP/IP for Embedded system M3S-T4-Tiny: User's Manual

R20UW0031EJ0106 Rev.1.06 Page 47 of 93
Apr 01, 2014

8.6 tcp_rcv_dat
<Prototype>

 ER tcp_rcv_dat(ID cepid, VP data, INT len, TMO tmout)

<Explanation>

This API receives data from the TCP communication end point cepid.

The data transmitted from the other node of communication is stored in the receive window. This API copies
data from the receive window to the user area indicated by the parameter data (hereafter referred to as
"retrieving data") and then returns. If the receive window is empty, the API is kept waiting until data is
received.

If the data size stored in the receive window is smaller than the data size len to be received, data is retrieved
from the receive window until it is emptied and the retrieved data size is returned.

When the connection is closed normally by the remote node and all of data is retrieved from the receive
window so that no data exists in it, value 0 is returned from the API.

When data has been received normally, the received data size is returned. If failed to receive, one of the above
error codes is returned depending on the cause of error. The cause of error is indicated in () for each error code.

The API is a non-blocking call. This API does not have the status "waiting for API end". Upon normal
termination of non-blocking call, this API returns value "E_WBLK". When reception is completed, callback
routine is called. Callback routine has three parameters viz.,"TCP communication end point number","function
code=TFN_TCP_RCV_DAT","pointer of error code"

If anything else apart from "TMO_NBLK" is specified in the callback routine, this API returns E_PAR.

<Arguments>

Argument Type Explanation
cepid ID Specify the ID of a TCP communication end point ("1"~ "30")
data VP Specify the top address of area in which received data will be

stored
The top address of the buffer reserved by the user for storing
the received data

len INT Maximum size in which to store the received data
Positive value

tmout TMO Specify a timeout .
Positive value: Timeout period for waiting until it finishes
 receiving. The unit of time is 10 ms
TMO_FEVR: Keeps waiting until it finishes receiving
 (waiting forever)
TMO_NBLK: non-blocking call
TMO_POL: polling

<Return value>

Return Value Explanation
Positive value Terminated normally (received data size in bytes)
0 Data terminated (connection closed normally. All data is received until

disconnected)
E_PAR Incorrect parameter error (invalid "tmout" value)
E_QOVR this error occurs when the called API does not end
E_OBJ Object status error (specified communication end point is unconnected)
E_TMOUT Time out (time set in tmout expired)
E_CLS Connection closed and the receive window is empty (forcibly closed by

reception RST)
E_WBLK non-blocking call is accepted

Renesas microcomputer TCP/IP for Embedded system M3S-T4-Tiny: User's Manual

R20UW0031EJ0106 Rev.1.06 Page 48 of 93
Apr 01, 2014

8.7 tcp_can_cep
<Prototype>

 ER tcp_can_cep(ID cepid, FN fncd)

<Explanation>

Before calling any other TCP API, this API is called for cancelling any TCP API called by a non-blocking call.
When a non-blocking call is canceled, then the callback routine will be called .At that time an event code
specified by fncd will be canceled, and error code address is pointer to error code "E_RLWAI".

The other API will be called after this API under the following conditions:
(1) The return value is E_OK when callback routine returns E_RLWAI
(2) The return value is E_OBJ when cancellation is failure.(nothing to cancel)

<Arguments>

Argument Type Explanation
cepid ID Specify the ID of a TCP communication end point ("1"~ any

value in configration)
fncd FN Event code (the following are corresponding event codes)

TFN_TCP_ACP_CEP, TFN_TCP_CON_CEP,
TFN_TCP_CLS_CEP,TFN_TCP_SND_DAT,
TFN_TCP_RCV_DAT,TFN_TCP_ALL

<Return value>

Return Value Explanation
E_OK Terminated normally (While cancelling the processing pending at the specified

TCP communication end point.)
E_OBJ Object status error (when API specified by fncd is not pending)
E_PAR Parameter error (invalid cepid, fncd)
E_NOSPT none support(when this API is called inside the callback routine)

Renesas microcomputer TCP/IP for Embedded system M3S-T4-Tiny: User's Manual

R20UW0031EJ0106 Rev.1.06 Page 49 of 93
Apr 01, 2014

8.8 udp_snd_dat
<Prototype>

 ER udp_snd_dat(ID cepid, T_IPV4EP *p_dstaddr, VP data, INT len, TMO
tmout)

<Explanation>

This API sends UDP datagram from the UDP communication end point cepid after specifying the remote IP
address and the port number. The API returns when the UDP datagram is stored in the transmit buffer. The
transmit buffer referred to here is not the one reserved internally in the T4, but is the internal transmit buffer of
the Ethernet controller (for Ethernet) or the transmit buffer reserved by the serial driver (for PPP). When data
is stored in the transmit buffer, the size of the transmitted data (= value of the fourth parameter len) is returned.

If the API failed to send, one of the above error codes is returned, with the cause of the error indicated in ().

In this API, a unicast address or multicast address or broadcast address or directed broadcast address can be
specified for the remote IP address before sending data.

In the T4, the maximum value of the UDP datagram size that can be sent at a time (It's referred to as N.)
depends on the size of the transmit buffer. If M bytes of Ethernet / PPP frame data can be transmitted with the
driver interface function lan_write() / ppp_write(), N is as follows.

N = M - Size of Frame header (F) - Minimum size of IP header (I) - Size of UDP header (U)
M <= 1514 (for Ethernet), M <= 1504 (for PPP)
F = 14 (for Ethernet), F = 4 (for PPP)
I = 20
U = 8
Because IP fragments are not supported in the T4, if the data larger than N bytes needs to be sent, the data
must be divided to smaller than or equal to N bytes. If a data size larger than N bytes is specified, the behavior
and the returned value of the API are indeterminate.

If TMO_FEVR is specified for the timeout specification tmout, the API is kept waiting until data is stored in
the transmit buffer. If a positive value is specified for the timeout specification tmout, the API is kept waiting
until the specified time is reached. If no data is stored in the transmit buffer by the specified time, the error
code E_TMOUT is returned. If data is stored in the transmit buffer by the specified time, the size of the stored
data is returned.

If TMO_NBLK is specified for the timeout specification tmout, a non-blocking call is assumed and this API is
not kept waiting. When a transmit request is accepted, non-blocking call accepted E_WBLK is returned. In this
case, a callback function is called at the time data is stored in the transmit buffer. The callback function has the
UDP communication end point ID, function code TFN_UDP_SND_DAT, and the pointer to error code passed
to it as arguments. The size of the stored data is indicated in the error code.

The following period, it is assumed that UDP transmit processing is underway. Therefore, do not rewrite the
transmit data during this processing period.

* Within a period from when this API is blocking-called to when the API returns.

* For a while until the callback function (with function code TFN_UDP_SND_DAT) is called after the non-
blocking call.

In the T4, except when udp_rcv_dat() is called by polling specification (TMO_POL) in the callback function
called by the event code TEV_UDP_RCV_DAT, multiple UDP functions (udp_rcv_dat() and udp_snd_dat())
cannot be issued at the same time. If this API is issued while any UDP function is being processed, the error
code E_QOVR is returned.

Renesas microcomputer TCP/IP for Embedded system M3S-T4-Tiny: User's Manual

R20UW0031EJ0106 Rev.1.06 Page 50 of 93
Apr 01, 2014

<Arguments>

Argument Type Explanation
cepid ID Specify the ID of a UDP communication end point

("1"~ any valid configuration value)
*p_dstaddr T_IPV4EP Specify the remote IP address and port number
data VP Specify the top address of transmit data

The top address of the data to be sent by the user
len INT Specify the length of transmit data

no fewer than 0, nor more than 1,472
tmout TMO Specify a timeout.

Positive value: Timeout period for waiting until it finishes
 sending
 The unit of time is 10 ms
TMO_FEVR: Keeps waiting until it finishes sending
 (waiting forever)

<Return value>

Return Value Explanation
0, positive value Terminated normally (transmitted data size in bytes = value of len)
E_PAR Parameter error (tmout is invalid)
E_QOVR Queuing overflow (total transmit/receive count that can be queued is exceeded)
E_TMOUT Time out (time set in tmout expired)
E_WBLK non-blocking call is accepted
E_CLS Connection Failed (Cannot exchange ARP protocol)

Renesas microcomputer TCP/IP for Embedded system M3S-T4-Tiny: User's Manual

R20UW0031EJ0106 Rev.1.06 Page 51 of 93
Apr 01, 2014

8.9 udp_rcv_dat
<Prototype>

 ER udp_rcv_dat(ID cepid, T_IPV4EP *p_dstaddr, VP data, INT len, TMO
tmout)

<Explanation>

This API receives UDP datagram from the UDP communication end point cepid and gets the remote IP
address and port number. When data has been received, the size of the received data is returned. If the API
failed to receive, one of the above error codes is returned, with the cause of the error indicated in ().

In the T4, the maximum value of the UDP datagram size that can be received at a time (It's referred to as N.)
depends on the size of the receive buffer of the driver. If M bytes of Ethernet / PPP frame data can be
transmitted with the driver interface function lan_read() / ppp_read(), N is as follows.

N = M - Size of Frame header (F) - Minimum size of IP header (I) - Size of UDP header (U)
M <= 1514 (for Ethernet), M <= 1504 (for PPP)
F = 14 (for Ethernet), F = 4 (for PPP)
I = 20
U = 8
Because IP fragments are not supported in the T4, if the data larger than N bytes is received, the data is
discarded.

If TMO_FEVR is specified for the timeout specification tmout, the API is kept waiting until UDP datagram is
received. If a positive value is specified for the timeout specification tmout, the API is kept waiting until the
specified time is reached. If no UDP datagram is received by the specified time, the error code E_TMOUT is
returned.

If TMO_NBLK is specified for the timeout specification tmout, a non-blocking call is assumed and this API is
not kept waiting. When a receive request is accepted, the non-blocking call-accepted E_WBLK is returned. In
this case, a callback function is called at the time the received data is stored in the user's receive buffer. The
callback function has the UDP communication end point ID, function code TFN_UDP_RCV_DAT, and the
pointer to error code passed to it as arguments. The size of the received data is indicated in the error code, and
the received data is stored in the user area data that is specified in the API in which the non-blocking call was
invoked.

The following period, it is assumed that the API is waiting for the UDP data to receive and that UDP receive
processing is underway.

* Within a period from when this API is blocking-called to when the API is exited.

* For a while until the callback function (with function code TEV_UDP_RCV_DAT) is invoked after the
non-blocking call.

If UDP datagram is received while the API is waiting for the UDP data to receive, the received UDP datagram
is copied to the received data area data beginning with the first part byte of data. If the size of the received data
is equal to or less than the specified data size len, all amounts of the received data is copied. If the size of the
received data is larger than the specified data size len, the received data is copied for up to an amount equal to
the specified data size len and the rest is discarded. The error code returned in the former case is the size of the
received data, and that in the latter case is the buffer overflow E_BOVR.

If UDP datagram is received while the API is not waiting for the UDP data to receive, a callback function for
the event code TEV_UDP_RCV_DAT is called. The callback function has the UDP communication end point
ID, event code TEV_UDP_RCV_DAT, and the pointer to error code (size of the received data) passed to it as
arguments. The size of received data is indicated in the error code. Data can be read out only when this API
that specifies polling TMO_POL for the timeout specification tmout is called in the callback function. If data is
not read out by polling specification, the receive buffer of the driver is freed after exiting the callback function.

In the T4, except when udp_rcv_dat() is called by polling specification (TMO_POL) in the callback function
called by the event code TEV_UDP_RCV_DAT, multiple UDP functions (udp_rcv_dat() and udp_snd_dat())
cannot be issued at the same time. If this API is issued while any UDP function is being processed, the error
code E_QOVR is returned.

Renesas microcomputer TCP/IP for Embedded system M3S-T4-Tiny: User's Manual

R20UW0031EJ0106 Rev.1.06 Page 52 of 93
Apr 01, 2014

In this API, it is possible to receive UDP datagrams whose remote IP address is a unicast address or multicast
addresses (224.0.0.0-239.255.255.255) or Broadcast address (255.255.255.255) . And Directed
broadcast address (Example: When 192.168.0.0/24, 192.168.0.255) . However, since IGMP is not
supported in the T4, routers cannot be notified of participation in multicast communication.

[(Supplements)]

When using a non-blocking call, note that depending on the call timing, a callback function for the event code
TEV_UDP_RCV_DAT may be called before that. In this case, a callback function for the function code
TFN_UDP_RCV_DAT is called upon receiving the next UDP data.

<Arguments>

Argument Type Explanation
cepid ID Specify the ID of a UDP communication end point ("1"~ "30")
*p_dstaddr T_IPV4EP Get the remote IP address and port number

Get the IP address and port number of the remote node that
transmitted data

data VP Specify the top address of area in which to store the received
data
The top address of the buffer reserved by the user for storing
the received data

len INT Specify the maximum size in which to store the received data
no fewer than 0, nor more than 1,472

tmout TMO Specify a timeout
Positive value: Timeout period for waiting until it finishes
receiving
The unit of time is 10 ms
TMO_FEVR: Keeps waiting until it finishes receiving
(waiting forever)
TMO_NBLK: Non-blocking call
TMO_POL: Polling
using in callback function for the event code
TEV_UDP_RCV_DAT

<Return value>

Return Value Explanation
0, positive value Terminated normally (received data size in bytes)
E_PAR Parameter error (tmout is invalid)
E_QOVR Queuing overflow (total transmit/receive count that can be queued is exceeded)
E_TMOUT Time out (time set in tmout expired)
E_WBLK non-blocking call is accepted
E_BOVER Buffer overflow (large data received that exceeds the received data storage

area)

Renesas microcomputer TCP/IP for Embedded system M3S-T4-Tiny: User's Manual

R20UW0031EJ0106 Rev.1.06 Page 53 of 93
Apr 01, 2014

8.10 udp_can_cep
<Prototype>

 ER udp_can_cep(ID cepid, FN fncd)

<Explanation>

Before calling any other UDP API, this API is called for cancelling any UDP API called by a non-blocking
call. When a non-blocking call is canceled, then the callback routine will be called .At that time an event code
specified by fncd will be canceled, and error code address is pointer to error code "E_RLWAI".

The other API will be called after this API under the following conditions:

(1) The return value is E_OK when callback routine returns E_RLWAI

(2) The return value is E_OBJ when cancellation is failure.(nothing to cancel)

<Arguments>

Argument Type Explanation
cepid ID Specify the ID of a UDP communication end point ("1"~ "30")
fncd FN Event code (the following are corresponding event codes)

TFN_UDP_SND_DAT, TEV_UDP_RCV_DAT,
TFN_UDP_ALL

<Return value>

Return Value Explanation
E_OK Terminated normally (While cancelling the processing pending at the specified

UDP communication end point.)
E_OBJ Object status error (when API specified by fncd is not pending)
E_PAR Parameter error (invalid cepid, fncd)
E_NOSPT none support(when this API is called inside the callback routine)

Renesas microcomputer TCP/IP for Embedded system M3S-T4-Tiny: User's Manual

R20UW0031EJ0106 Rev.1.06 Page 54 of 93
Apr 01, 2014

8.11 ppp_open
<Prototype>

 ER ppp_open(void)

<Explanation>

To make a connection to the PPP server, establish a linkage with the PPP server, perform authentication using
PAP and enter IPCP in an open state.

In PAP authentication, use the user name and password stored in the global variables user_name and
user_passwd that are set in the T4 configuration file.

In IPCP, if the IP address in the variable tcpudp_env that is set in the T4 configuration file is not all 0s, assign
a specific IP address to the PPP server. Or, if the IP address in the variable tcpudp_env is all 0s, request the
automatic assignment of IP addresses by the PPP server. Even when a specific IP address is requested, there is
no guarantee that the PPP server will approve it. The IP address finally approved by the PPP server is stored in
the IP address of the variable tcpudp_env.

Call this API after the initialization of the T4 library function tcpudp_open().

<Arguments>

Argument Type Explanation
none none -

<Return value>

Return Value Explanation
E_OK Terminated normally
Negative value Failed to initialize

Renesas microcomputer TCP/IP for Embedded system M3S-T4-Tiny: User's Manual

R20UW0031EJ0106 Rev.1.06 Page 55 of 93
Apr 01, 2014

8.12 ppp_close
<Prototype>

 ER ppp_close(void)

<Explanation>

This API close connection with the PPP server.

<Arguments>

Argument Type Explanation
none none -

<Return value>

Return Value Explanation
E_OK Terminated normally
Negative value Failed to close

Renesas microcomputer TCP/IP for Embedded system M3S-T4-Tiny: User's Manual

R20UW0031EJ0106 Rev.1.06 Page 56 of 93
Apr 01, 2014

8.13 ppp_status
<Prototype>

 UH ppp_status(void)

<Explanation>

The connection status of PPP is returned.

<Arguments>

Argument Type Explanation
none none -

<Return value>

Return Value Explanation
0x0001(PS_DEAD) Link disconnected
0x0002(PS_ESTABLISH) LCP phase
0x0004(PS_AUTHENTICATE) Authentication phase (PAP)
0x0008(PS_NETWORK) NCP phase (IPCP)
0x0010(PS_NETOPEN) Network established
0x0020(PS_TERMINATE) Link being disconnected
Negative value Failed to initialize

Depending on the connection status of PPP, one of the following values is returned:

Renesas microcomputer TCP/IP for Embedded system M3S-T4-Tiny: User's Manual

R20UW0031EJ0106 Rev.1.06 Page 57 of 93
Apr 01, 2014

8.14 ppp_api_req
< API format >

ER ppp_api_req (UH type, void far *parblk, H tmout)

< Description >

To the PPP processing of the T2 library, this function issues a request to send the AT command, receive response code
or wait for a designated time. Each request is specified by the request number type. The parameters required for the
respective requests are specified by the pointer parblk. If the issued request is not completed by a designated time, a
timeout error E_TMOUT (-85) is returned.

When a request is issued by this function, the following driver functions are executed in the PPP processing functions.

1) If type is PPP_SNDCOMMAND

modem_write()

2) If type is PPP_RCVRZLT
modem_read()

3) If type is PPP_WAIT
None

The following shows the value returned by this function.

1) If type is PPP_SNDCOMMAND
The returned value of modem_write()

2) If type is PPP_RCVRZLT
The returned value of modem_read()

3) If type is PPP_WAIT
E_TMOUT (-85)

< Parameters >

Argument Type Explanation
type UH The request number issued to the PPP processing function. Set one of

the following. Do not use any other values because they are reserved.
3:(PPP_API_SNDCOMMAND) Request to send AT command
4:(PPP_API_RCVRZLT) Request to receive response code
5:(PPP_API_WAIT) Request to wait for a designated time

parblk void * The pointer to the parameter corresponding to the request. If type is
PPP_API_WAIT, this pointer has no effect.
(The format of the data indicated by the pointer parblk can be
customized.)
In the case of the sample driver, the parameter parblk indicates the
following:
1: If type is PPP_API_SNDCOMMAND, it indicates the top address of
the array in which the pointer to the AT command is stored.
2: If type is PPP_API_RCVRZLT, it indicates the address at which the
pointer to the response code is stored.

tmout H Timeout specification.
Positive value: Timeout period (in 10 ms units)
-1: Waiting forever
Any other values: Reserved (cannot be set)

Renesas microcomputer TCP/IP for Embedded system M3S-T4-Tiny: User's Manual

R20UW0031EJ0106 Rev.1.06 Page 58 of 93
Apr 01, 2014

< Returns and error codes >

Return Value Explanation
0 or more Terminated normally.
E_TMOUT (-85) Terminated due to timeout.
Negative value Terminated due to other errors. (Depends on driver implementation)

< Precautions >

This function is one of the functions included in the T4 library. It does not need to be created by the user. Use it when
creating API functions for the driver.

Renesas microcomputer TCP/IP for Embedded system M3S-T4-Tiny: User's Manual

R20UW0031EJ0106 Rev.1.06 Page 59 of 93
Apr 01, 2014

8.15 callback
<Prototype>

 ER callback(ID cepid, FN fncd, VP p_parblk)

<Explanation>

The TCP or UDP callback functions are called when the process of a non-blocking call has completed.

The processing of the TCP or UDP callback functions consist in each notification, one that is created by the
user. The argument fncd indicates the type of notification. Kinds of events and the timing with which the
callback function is called are shown in Appendix 3.

The return value that is for completed API is stored into the area p_parblk pointed. For example, user calls
tcp_snd_dat() with TMO_NBLK (None-blocking call), and complete sending, the callback() function will be
called with p_parblk includes sending data length.

Callback functions can be set to each communication endpoint defined in "config_tcpudp.c". Please refer to the
6.3 Definition of TCP communication endpoint, or 6.4 Definition of UDP communication endpoint.

<Arguments>

Argument Type Explanation
cepid ID This argument has the communication endpoint ID that was

used in completed API
fncd FN This argument has the function code that indicates

completed API
p_parblk VP This argument has the pointer that is stored return value for

completed API

<Return value>

Return Value Explanation
0 Set always "0

Renesas microcomputer TCP/IP for Embedded system M3S-T4-Tiny: User's Manual

R20UW0031EJ0106 Rev.1.06 Page 60 of 93
Apr 01, 2014

8.16 tcpudp_get_ramsize
<Prototype>

 W tcpudp_get_ramsize(void)

<Explanation>

This API gets the size of the work area used by the T4 (RAM size) which is returned as its return value. The
work area is a memory area used for the TCP receive window and other purposes, which needs to be reserved
in a program and initialized with parameters to the initialization function of API, tcpudp_open(). The top
address of the work area is aligned to 4 byte boundaries.

EX) When this API's return value is 100, the work area used by the T4 is aligned as follows:

 UW work[100/4];

This API can be used for the following purposes:

To reserve a work area using a static array

Although this API calculates the size of the work area used by the T4 according to the contents set in the
TCP/IP configuration file, the user will have difficulty calculating it in advance. Therefore, when the contents
of the T4 configuration file have been determined, rebuild the program and execute this API in a debugger to
examine its returned value. Then reserve as much memory array for the work area as the size indicated by the
returned value.

Note, however, that if the T4 configuration file is altered, the necessary size of the work area changes. In that
case, recalculate the size of the work area by using this API. Furthermore, as a processing to check for errors,
always be sure to call this API in the initialization processing and compare the returned value with the final
size of the work area determined by the user. If they do not match, branch to error handling. That way, errors
can be found at the debugging or test stages.

To reserve a work area from dynamic memory

Call this API in the initialization step of the application program to calculate the size of the work area. Reserve
the calculated size of the work area from dynamic memory and pass the reserved area to the initialization
function tcpudp_open() to have the work area initialized with it.

<Arguments>

Argument Type Explanation

none none -

<Return value>

Return Value Explanation
positive value The size of the work area used by the T4 (in bytes)

Renesas microcomputer TCP/IP for Embedded system M3S-T4-Tiny: User's Manual

R20UW0031EJ0106 Rev.1.06 Page 61 of 93
Apr 01, 2014

8.17 tcpudp_open
<Prototype>

 ER tcpudp_open(UW *work)

<Explanation>

This API initializes the T4 library. In the library initialization processing, the API performs memory allocation
and initialization of the internal managed area, as well as invokes the TCP/IP cyclic processing each task used
by the library.

Specify the top address of the work area used by the T4 for work. The necessary size of the work area may be
obtained from the returned value of tcpudp_get_ramsize().

<Arguments>

Argument Type Explanation
*work UW Address of the work area used by the T4

<Return value>

Return Value Explanation
E_OK Terminated normally
Negative value Failed to initialize

Renesas microcomputer TCP/IP for Embedded system M3S-T4-Tiny: User's Manual

R20UW0031EJ0106 Rev.1.06 Page 62 of 93
Apr 01, 2014

8.18 _process_tcpip
<Prototype>

 void _process_tcpip(void)

<Explanation>

This API processes the TCP/IP protocol of the T4 library.Various driver function like the lead light function
etc. to the driver layer calls this function. The processing time of this function changes depending on the
packaging method of the state of the communication and the driver layer. The stack of this function changes
depending on the packaging method of the driver layer. This function must be specified "1" for type, and start
regularly at arbitrary intervals (10msec recommendation).

T4 does the time management by using tcpudp_get_time().

As for the return value of tcpudp_get_time(), it is necessary to do the increment with 10msec. The following
problems occur when the interval of the increment is not 10msec.

* The timeout specified in an API does not occur within the designated time.

* Retransmission operations are not performed at designated intervals.

* The zero window probe is not performed at designated intervals.

* The timeout period of 2MSL for disconnecting does not conform to the designated time.

This API must be specified type "1", and start by the reception/transmission interrupt detection. The
transmission rate improves in case which is not using reception interrupt, because the following data can be
transmitted in response to the ACK reception from the other party of the communication when the start is
possible from the reception interrupt, and it transmit ACK in response to the data reception from the other
party of the communication. The reception interrupt is able not to be used by starting specifying type "1" when
starting at the cycle by the above-mentioned timer interrupt when the INT interrupt terminal etc. to detect the
reception interrupt are insufficient, and the transmission rate doesn't worry especially, and to operate it
normally.

<Arguments>

Argument Type Explanation
none none -

<Return value>

Return Value Explanation
none -

Renesas microcomputer TCP/IP for Embedded system M3S-T4-Tiny: User's Manual

R20UW0031EJ0106 Rev.1.06 Page 63 of 93
Apr 01, 2014

8.19 tcpudp_close
<Prototype>

 ER tcpudp_close(void)

<Explanation>

This API closes the T4 library. In the library closing processing, the API terminates the TCP/IP cyclic
processing used by the library.

Before calling this API, be sure to disconnect all of the TCP and UDP communication end points and enter an
"unused" state.

The work area specified by the library open function tcpudp_open() is released after executing this API, so
that the work area is free to use in the application program.

<Arguments>

Argument Type Explanation
none none -

<Return value>

Return Value Explanation
E_OK Terminated normally
Negative value Failed to close

Renesas microcomputer TCP/IP for Embedded system M3S-T4-Tiny: User's Manual

R20UW0031EJ0106 Rev.1.06 Page 64 of 93
Apr 01, 2014

9. Ethernet and PPP Driver API Specifications
The T4 driver APIs are listed in Table 4, Table 5 and Table 6. These APIs are RENESAS-original APIs developed
independently of ITRON TCP/IP API Specification.

Table 4. Ethernet Driver APIs

Ethernet Driver API C Language API Remarks

Open Ethernet driver ER lan_open(void) APIs called from the
user application Close Ethernet driver ER lan_close(void)

Receive data H lan_read(UB, B **)

APIs called internally
from the library Transmit data H lan_write(UB, B *, H, B *, H)

Reset Ethernet controller void lan_reset(UB)

* Prototype declarations for the APIs in Table 4 are included in r_t4_itcpip.h file.

Table 5. PPP Driver APIs

PPP Driver API C Language API Remarks

Open serial I/O void sio_open(UB) APIs called from the
user application

Close serial I/O void sio_close(void)

Connect modem
(T4 is PPP client) ER modem_active_open(void)

Connect modem
(T4 is PPP server) ER modem_passive_open(void)

Disconnect modem ER modem_close(void)

Get PPP status UH ppp_status(void)

Receive PPP frame H ppp_read(UB **)

APIs called internally
from the library

Transmit PPP frame H ppp_write(B *, H, B **, H *, H)

Receive response code of modem H modem_read(UB **)

Transmit modem command H modem_write(void far *)

Get PPP driver status UH ppp_drv_status(void)

Wait for completion of PPP API void ppp_api_slp(void)

Cancel the wait state of the PPP API
completion void ppp_api_wup(void)

random number generate for CHAP void get_random_number(UB *, UW)

* Prototype declarations for the APIs in
Table 5 are included in r_t4_itcpip.h file.

Renesas microcomputer TCP/IP for Embedded system M3S-T4-Tiny: User's Manual

R20UW0031EJ0106 Rev.1.06 Page 65 of 93
Apr 01, 2014

Table 6. Common APIs for Ethernet/PPP driver

Ethernet/PPP Driver API C Language API Remarks

Release receive buffer of driver H rcv_buff_release(UB)

APIs called internally
from the library

Wait for completion of TCP API void tcp_api_slp(ID)

Cancel the wait state of the TCP API
completion void tcp_api_wup(ID)

Wait for completion of UDP API void udp_api_slp(ID)

Cancel the wait state of the UDP API
completion void udp_api_wup(ID)

Control cyclic activation of TCP/IP
processing function void tcpudp_act_cyc(UB)

Get time information UH tcpudp_get_time(void)

Enable Interrupt temporary void ena_int(void)

Disable Interrupt temporary void dis_int(void)

Report error void report_error(UB, H, UB*)

* Prototype declarations for the APIs in Table 6 are included in r_t4_itcpip.h file.

The APIs listed in Table 4, Table 5 and Table 6 can be classified into the following three:

1. APIs that need to be called from an application program

2. APIs that are called from the T4 library and do not need to be called from an application

(those in the shaded sections of the above table)

3. APIs that assist users in creating a driver API and do not need to be called from an application

This manual describes how to use the APIs classified into 1. above, i.e. those that need to be called from the application
program.

Refer to another documents "Ethernet Driver Interface Specification" and "PPP Driver Interface Specification" for
details about each API specification. Follow the API specifications as you create driver functions.

[(Supplement)]

Of the APIs listed in Table 5, the functions ppp_open(), ppp_close() and ppp_api_req(), which are used to control
the PPP driver, have their entities incorporated in the T4 library. (For the stack size, refer to the Introduction Guide.)

In contrast, all of the other APIs are separated as Ethernet or PPP drivers from the T4 library, and the sample sources
for these APIs each are supplied as a driver sample program.

Renesas microcomputer TCP/IP for Embedded system M3S-T4-Tiny: User's Manual

R20UW0031EJ0106 Rev.1.06 Page 66 of 93
Apr 01, 2014

9.1 lan_open
<Prototype>

 ER lan_open(void)

<Explanation>

This API initializes the Ethernet controller and Ethernet driver. If the global variable _myethaddr set in the
T4 configuration file is all 0s, the Ethernet address stored in ROM is set in the Ethernet controller and also
copied to _myethaddr. If _myethaddr is not all 0s, the defined value is set in the Ethernet controller. Refer to
Chapter 6 for details on how to set the global variable _myethaddr.

<Arguments>

Argument Type Explanation
none none -

<Return value>

Return Value Explanation
E_OK Terminated normally
Negative value Failed to initialize

Renesas microcomputer TCP/IP for Embedded system M3S-T4-Tiny: User's Manual

R20UW0031EJ0106 Rev.1.06 Page 67 of 93
Apr 01, 2014

9.2 lan_close
<Prototype>

ER lan_close(void)

<Explanation>

This API stops the Ethernet controller and terminates the Ethernet driver.

<Arguments>

Argument Type Explanation
none none -

<Return value>

Return Value Explanation
E_OK Terminated normally
Negative value Failed to close

Renesas microcomputer TCP/IP for Embedded system M3S-T4-Tiny: User's Manual

R20UW0031EJ0106 Rev.1.06 Page 68 of 93
Apr 01, 2014

9.3 sio_open
<Prototype>

 void sio_open(UB rate)

<Explanation>

This function initializes the serial I/O to be used, to make it ready to transmit and receive. The baud rate is
passed to the parameter rate by a value (0 - 5) representing each baud rate. These values are defined by BR96 -
BR1152 in the header file r_t4_itcpip.h.

<Arguments>

Argument Type Explanation
Rate UB • Sets the baud rate of serial I/O

0: (BR96) 9600bps
1: (BR192) 19200bps
2: (BR288) 28800bps
3: (BR384) 38400bps
4: (BR576) 57600bps
5: (BR1152) 115200bps

<Return value>

Return Value Explanation
None -

Renesas microcomputer TCP/IP for Embedded system M3S-T4-Tiny: User's Manual

R20UW0031EJ0106 Rev.1.06 Page 69 of 93
Apr 01, 2014

9.4 sio_close
<Prototype>

 void sio_close(void)

<Explanation>

This function disables the transmission/reception interrupts of the serial I/O used, to make the serial I/O
incapable of transmission/reception operations

<Arguments>

Argument Type Explanation
None none -

<Return value>

Return Value Explanation
None -

Renesas microcomputer TCP/IP for Embedded system M3S-T4-Tiny: User's Manual

R20UW0031EJ0106 Rev.1.06 Page 70 of 93
Apr 01, 2014

9.5 modem_active_open
<Prototype>

 ER modem_active_open(void)

<Explanation>

This function initializes a modem and connects it to a phone line to establish a modem connection. In
initializing a modem, it uses the user-specified initialization AT command at_commands to set up operation
of the modem. Furthermore, in connecting to a phone line, it uses the modem to place a call to the destination
telephone number peer_dial.

<Arguments>

Argument Type Explanation
none none -

<Return value>

Return Value Explanation
E_OK Successfully connected a modem
Negative value Failed to connect a modem

Renesas microcomputer TCP/IP for Embedded system M3S-T4-Tiny: User's Manual

R20UW0031EJ0106 Rev.1.06 Page 71 of 93
Apr 01, 2014

9.6 modem_passive_open
<Prototype>

 ER modem_passive_open(void)

<Explanation>

This function initializes a modem and connects it to a phone line to establish a modem connection. In
initializing a modem, it uses the user-specified initialization AT command at_commands to set up operation
of the modem. Furthermore, in connecting to a phone line, and waiting "incoming call" This function waits
till incoming call.

<Arguments>

Argument Type Explanation
none none -

<Return value>

Return Value Explanation
E_OK Successfully connected a modem
Negative value Failed to connect a modem

Renesas microcomputer TCP/IP for Embedded system M3S-T4-Tiny: User's Manual

R20UW0031EJ0106 Rev.1.06 Page 72 of 93
Apr 01, 2014

9.7 modem_close
<Prototype>

 ER modem_close(void)

<Explanation>

This function enters the modem from communication mode into command mode and then disconnects the
phone line.

<Arguments>

Argument Type Explanation
none none -

<Return value>

Return Value Explanation
E_OK Successfully connected a modem
Negative value Failed to disconnect a modem

Renesas microcomputer TCP/IP for Embedded system M3S-T4-Tiny: User's Manual

R20UW0031EJ0106 Rev.1.06 Page 73 of 93
Apr 01, 2014

9.8 get_random_number
<Prototype>

 void get_random_number(UB *data, UW len)

<Explanation>

Set the random value (specified data length) to the specified pointer.

<Arguments>

Argument Type Explanation
data UB * Data pointer to write the random value.
len UW Byte length for needed random value.

<Return value>

Return Value Explanation
none -

Renesas microcomputer TCP/IP for Embedded system M3S-T4-Tiny: User's Manual

R20UW0031EJ0106 Rev.1.06 Page 74 of 93
Apr 01, 2014

10. Sample Program
T4 sample program prepares four project files including source file below.

• TCP blocking call (echo_srv_tcp_blocking directory)
• TCP nonblocking call (echo_srv_tcp_nonblocking directory)
• UDP blocking call (echo_srv_udp_blocking directory)
• UDP nonblocking call (echo_srv_udp_nonblocking directory)

The sample program has a common main function. The main function calls an echo_srv() function. Four above patterns
are implementations of the echo back server and please use one pattern of project.

10.1 Flow of the main function
Cf. Fig 20. Flow of the main function

10.2 Flow of the TCP echo back server function(for blocking call)
10.2.1 Flow of the echo back server function
Cf. Fig 21. Flow of the TCP echo back server function(for blocking call)

10.3 Flow of the TCP echo back server function (for nonblocking call)
10.3.1 Flow of the echo back server function
Cf. Fig 22. Flow of the TCP echo back server function (for non-blocking call)

10.3.2 Flow of the callback function
Cf. Fig 23. Flow of the TCP callback function (for non-blocking call)

10.4 Flow of the UDP echo back server function (for blocking call)
10.4.1 Flow of the echo back server function
Cf. Fig 24. Flow of the UDP echo back server function (for blocking call)

10.5 Flow of the UDP echo back server function (for nonblocking call)
10.5.1 Flow of the echo back server function
Cf. Fig 25. Flow of the UDP echo back server function(for non-blocking call)

10.5.2 Flow of the callback function
Cf. Fig 26. Flow of the UDP callback function (for non-blocking call)

Renesas microcomputer TCP/IP for Embedded system M3S-T4-Tiny: User's Manual

R20UW0031EJ0106 Rev.1.06 Page 75 of 93
Apr 01, 2014

Fig 20. Flow of the main function

START

Initialize TCP/IP

Initialize Serial

Dial-up connection

Open PPP

Close PPP

Open Ethernet

End of TCP/IP

Close Ethernet

Close Serial

Dial-up line
disconnection

Echo-back
Server

END

main()

For PPP

For
Ethernet

For PPP

For
Ethernet

Renesas microcomputer TCP/IP for Embedded system M3S-T4-Tiny: User's Manual

R20UW0031EJ0106 Rev.1.06 Page 76 of 93
Apr 01, 2014

Fig 21. Flow of the TCP echo back server function(for blocking call)

TCP Transmit API
(blocking call)

START

TCP reception API
(blocking call)

Echo back server

Receive data
==
FIN

ERROR?

Y

Y

Y

N

N

N

When TCP data reception is in
the case of API return value ==
0, T4 can detect FIN reception.

END

TCP close API
(blocking call)

TCP shutdown API
(blocking call)

ERROR?

TCP accept API
(blocking call)

ERROR?

Accept 1024 port

Renesas microcomputer TCP/IP for Embedded system M3S-T4-Tiny: User's Manual

R20UW0031EJ0106 Rev.1.06 Page 77 of 93
Apr 01, 2014

Fig 22. Flow of the TCP echo back server function (for non-blocking call)

START

echo back server

N

Y
terminate data transmit TCP API

（non blocking call）

loop counter
==

number of cep

status
==

CLOSE WAIT

wait for connection request TCP API
（non blocking call）

status
==

CLOSED

Y

N

Y

N

status <- LAST_ACK

 1

Check all cep and execute "terminate data
transmit TCP API" for receiving FIN
packet.

(because "terminate data transmit TCP
API" should not be called in callback
routine)

update loop counter

 1

Other software can process during 1

This sample does not have end conditions.

If there are closed cep, execute "Wait for
connection request TCP API" for the cep.

This sample accepts 1024, 1025, 1026 ports at
same time.

This sample program has communication
buffer and flag information at every cep.

status <- ACCEPT

Initialize loop counter

status <- CLOSED

Renesas microcomputer TCP/IP for Embedded system M3S-T4-Tiny: User's Manual

R20UW0031EJ0106 Rev.1.06 Page 78 of 93
Apr 01, 2014

Fig 23. Flow of the TCP callback function (for non-blocking call)

START

callback

function code

(fncd)

transmit data API
（non blocking call）

data reception API
（non blocking call）

terminate data transmission
(TFN_TCP_SHT_CEP)

FIN received

wait for request

connection
(TFN_TCP_ACP_CEP)

error code

(*p_parblk)

no error error occurred

status <- CLOSED

END

transmit data
(TFN_TCP_SND_DAT)

receive data
(TFN_TCP_RCV_DAT)

close communication end point
(TFN_TCP_CLS_CEP)

close communication end point API
（non blocking call）

function code

(fncd)

status <- CLOSED

close communication end point
(TFN_TCP_CLS_CEP)

other function code

close communication end point API
（non blocking call）

END

Error would occur in case below.

>> No response from host

>> RST received from host

N Y

status <- CLOSE_WAIT

status <- ESTABLISHED

Renesas microcomputer TCP/IP for Embedded system M3S-T4-Tiny: User's Manual

R20UW0031EJ0106 Rev.1.06 Page 79 of 93
Apr 01, 2014

Fig 24. Flow of the UDP echo back server function (for blocking call)

START

echo back server

END

Y

N

UDP data transmit API
(blocking call)

error

UDP data receive API
（blocking call)

error

Y

N

wait receiving UDP 1365 port

Renesas microcomputer TCP/IP for Embedded system M3S-T4-Tiny: User's Manual

R20UW0031EJ0106 Rev.1.06 Page 80 of 93
Apr 01, 2014

Fig 25. Flow of the UDP echo back server function(for non-blocking call)

Fig 26. Flow of the UDP callback function (for non-blocking call)

START

callback

function code
(fncd)

TEV_UDP_RCV_DAT

UDP data reception API
(polling)

UDP data transmit API
(non blocking call)

END

TFN_UDP_RCV_DAT

 UDP data transmit API
(non blocking call)

UDP data transmit API
(non blocking call)

TFN_UDP_SND_DAT

START

echo back server All process are executed in callback routine.

UDP reception event would occur if UDP
receive data API is not called.

In this case, callback routine would be
called with function code
"TEV_UDP_RCV_DAT"

This sample does not have end conditions.

Renesas microcomputer TCP/IP for Embedded system M3S-T4-Tiny: User's Manual

R20UW0031EJ0106 Rev.1.06 Page 81 of 93
Apr 01, 2014

10.6 Execution Environment
A typical hardware configuration necessary to execute this sample program is shown in Fig 27 for the Ethernet case,
and in Fig 28 for the PPP case.

Fig 27. Execution environment for the sample program (Ethernet)

Fig 28. Execution environment for the sample program (PPP)

RS CS TR RD TD CD
TALK / DATA

TALK

PC(Windows)

192.168.0.2 / 24

Evaluation board

192.168.0.3 / 24

Ethernet cable
(10or100or1000

BASE-T)

Ethernet cable
(10or100or1000

BASE-T)

HUB

Modem Bank

RS CS TR RD TD CD
TALK / DATA

TALKRS CS TR RD TD CD
TALK / DATA

TALK

PC(Windows)

PPPserver

192.168.0.2 / 24

Evaluation board

PPP client

192.168.0.3 / 24

Serial

 cable

Serial

 cable

Telephone
line

Telephone
line

Modem Modem
Line

emulator

Renesas microcomputer TCP/IP for Embedded system M3S-T4-Tiny: User's Manual

R20UW0031EJ0106 Rev.1.06 Page 82 of 93
Apr 01, 2014

10.7 Execution Method
The procedural steps (1) to (6) below show how to execute the sample program. Follow steps (2) and (4) to (6) for
Ethernet and steps (1) to (6) for PPP.

(1) Starting the dial-up server on your computer
Before starting the dial-up server you need to set it up by registering your name "abcde" and password
"abc00". On TCP/IP setting of dial-up server, set client IP address that is assigned by the PPP server is
'192.168.0.3'.

(2) Downloading the sample program
Download the sample program into the evaluation board and execute it.

(3) Making a connection to the PPP server
Dial-up from the evaluation board to connect to the PPP server on your computer and execute PPP
negotiation.

(4) Setting up a connection
 [TCP blocking call sample program]

Execute the command shown below at the MS-DOS prompt of your computer.
 telnet 192.168.0.3 1024

 [TCP none-blocking call sample program (multiple communication end point can be used at same time)]

 telnet 192.168.0.3 1024

 telnet 192.168.0.3 1025

 telnet 192.168.0.3 1026

If you use Windows7:

(1) Control Panel -> Program -> Program and Function

→Click “Enable/Disable Windows Function”

(2) Click checkbox of Telnet client and OK button.

 [UDP blocking call sample program]

 User uses PC free tool that can generate UDP packet. Setting is below.

 Destination IP address : 192.168.0.3 port number 1365

 [UDP none-blocking call sample program(multiple communication end point can be used at same time)]

 Destination IP address : 192.168.0.3 port number 1365

 Destination IP address : 192.168.0.3 port number 1366

 Destination IP address : 192.168.0.3 port number 1367

Renesas microcomputer TCP/IP for Embedded system M3S-T4-Tiny: User's Manual

R20UW0031EJ0106 Rev.1.06 Page 83 of 93
Apr 01, 2014

 (5) Transmission of character
When character is input on TELNET window or UDP tools, this character transmits to the evaluation board.
Then the received character is transmitted to PC from the evaluation board and be displayed on TELNET
window or UDP tools on PC.

Free soft to transmit/receive UDP data.:
Socket Debugger Free http://sdg.ex-group.jp/distinction.html

(6) Closing the connection and reconnection
TELNET can be disconnected using "quit" command in the command line.
The command line will enable when "CTRL +]" in telnet display.
Please continue (4) to re-connect..

http://sdg.ex-group.jp/distinction.html

Renesas microcomputer TCP/IP for Embedded system M3S-T4-Tiny: User's Manual

R20UW0031EJ0106 Rev.1.06 Page 84 of 93
Apr 01, 2014

10.8 Execution Environment (several LAN port)
A typical hardware configuration necessary to execute this sample program is shown in Fig 27 for the Ethernet case,
and in Fig 28 for the PPP case.

Fig 29. Execution environment for the sample program (Several LAN port)

PC(Windows)

192.168.0.2 / 24

192.168.0.3 / 24

Ethernet cable
 (10or100or1000

BASE-T)

Ethernet cable
(10or100or1000

BASE-T)

 HUB

RS CS TR RD TD CD
TALK / DATA

TALK

Evaluation board

192.168.0.10 / 24

Renesas microcomputer TCP/IP for Embedded system M3S-T4-Tiny: User's Manual

R20UW0031EJ0106 Rev.1.06 Page 85 of 93
Apr 01, 2014

10.9 Execution Method(Several LAN port)
 (1) Downloading the sample program

Download the sample program into the evaluation board and execute it.
(4) Setting up a connection

 [TCP blocking call sample program]

Execute the command shown below at the MS-DOS prompt of your computer.
 telnet 192.168.0.3 1024

 telnet 192.168.0.10 1024

 [TCP none-blocking call sample program (multiple communication end point can be used at same time)]

 telnet 192.168.0.3 1024

 telnet 192.168.0.3 1025

 telnet 192.168.0.3 1026

 telnet 192.168.0.10 1024

 telnet 192.168.0.10 1025

 telnet 192.168.0.10 1026

If you use Windows7:

(1) Control Panel -> Program -> Program and Function

→Click “Enable/Disable Windows Function”

(2) Click checkbox of Telnet client and OK button.

 [UDP blocking call sample program]

 User uses PC free tool that can generate UDP packet. Setting is below.

 Destination IP address : 192.168.0.3 port number 1365

 Destination IP address : 192.168.0.10 port number 1375

 [UDP none-blocking call sample program(multiple communication end point can be used at same time)]

 Destination IP address : 192.168.0.3 port number 1365

 Destination IP address : 192.168.0.3 port number 1366

 Destination IP address : 192.168.0.3 port number 1367

 Destination IP address : 192.168.0.10 port number 1365

 Destination IP address : 192.168.0.10 port number 1366

 Destination IP address : 192.168.0.10 port number 1367

Renesas microcomputer TCP/IP for Embedded system M3S-T4-Tiny: User's Manual

R20UW0031EJ0106 Rev.1.06 Page 86 of 93
Apr 01, 2014

 (5) Transmission of character
When character is input on TELNET window or UDP tools, this character transmits to the evaluation board.
Then the received character is transmitted to PC from the evaluation board and be displayed on TELNET
window or UDP tools on PC.

Free soft to transmit/receive UDP data:
Socket Debugger Free http://sdg.ex-group.jp/distinction.html

(6) Closing the connection and reconnection
TELNET can be disconnected using "quit" command in the command line.
The command line will enable when "CTRL +]" in telnet display.
Please continue (4) to re-connect..

http://sdg.ex-group.jp/distinction.html

Renesas microcomputer TCP/IP for Embedded system M3S-T4-Tiny: User's Manual

R20UW0031EJ0106 Rev.1.06 Page 87 of 93
Apr 01, 2014

11. T4 Limitations and Usage Precautions
The T4 limitations and usage precautions are described in (1) to (13) below.

(1) The APIs tcp_get_buf(), tcp_snd_buf(), tcp_rcv_buf() and tcp_rel_buf(), are not supported.
(2) The emergency data transmit and receive functions tcp_snd_oob() and tcp_rcv_oob() are not supported.
(3) The option setting and acquisition functions tcp_set_opt(), tcp_get_opt(), udp_set_opt() and udp_get_opt() are

not supported.
(4) In TCP APIs, multicast address, broadcast address and loopback address cannot be specified for the remote IP

address.
(5) In UDP APIs, loopback address cannot be specified for the remote IP address.
(6) Polling (TMO_POL) that is specified to be the UDP receive function udp_rcv_dat() is accepted in only the

callback function called by the event code TEV_UDP_RCV_DAT. If polling (TMO_POL) is specified in other
than the callback function, a parameter error (E_PAR) is returned.

(7) Since IGMP is not supported, routers cannot be requested for transfer of IP datagrams whose remote IP
addresses are multicast addresses.

(8) The number of APIs that can be executed simultaneously in the T4 is one each for TCP and UDP. If multiple
APIs are executed at the same time, the APIs return the parameter E_QOVR.

(9) For TCP, the T4 only supports the MSS in header option. All options but MSS are ignored when receiving TCP
segments.

(10) For IP, the T4 does not support IP options and fragments. If the received IP datagram contains IP options or has
been fragmented, the datagram is discarded.

(11) For ICMP, the T4 only supports receiving an echo request and transmitting an echo response in return for that.
If the received packet contains any other ICMP messages, the packet is discarded.

(12) For PPP, the T4 does not support compression-related options (i.e., protocol field compression, address and
control field compression and TCP/IP header compression). If a request is received that requires setting
compression-related options, Configure-Rejects of setting is transmitted in response.

(13) Before calling the function tcpudp_close(), be sure to close all of the communication end points and enter an
"unused" state. If tcpudp_close () is called while communication is on, the program may behave erratically.

(14) Please allocate the T_IPV4EP structure variable that is specified by argument as the global variable.

Renesas microcomputer TCP/IP for Embedded system M3S-T4-Tiny: User's Manual

R20UW0031EJ0106 Rev.1.06 Page 88 of 93
Apr 01, 2014

Appendix A. Return Values of TCP APIs
A1. Behavior of the API when the Line is disconnected unintentionally
If the line is disconnected as when cable has gotten out of place, the API is not notified of it. The behavior of the API
(return value) is the same as when the other side of communication hung up or is rebooted becoming unable to
communicate normally. For APIs where timeout period is set by an argument, failure can be detected by timeout.

The point at which a return value is returned to the API when the line has been disconnected is basically

(time1) when the timeout period that is positive value specified by an argument of the API is reached

(time2) when the maximum value of retransmission timeout time is reached while sending a TCP segment

If TMO_FEVR is specified for timeout in the API, (time2) applies for the timing that returns from the API. Otherwise,
(time1) or (time2) whichever shorter applies. Therefore, if the time (time2) is shorter than the other, the API times out
when the specified time in (time2) is reached and the return value is that of (time2).

Renesas microcomputer TCP/IP for Embedded system M3S-T4-Tiny: User's Manual

R20UW0031EJ0106 Rev.1.06 Page 89 of 93
Apr 01, 2014

A2. Return value of each TCP API and the status of communication end point
For the cases (time1) and (time2) in A1 above, and for the case (R) where RST is received from the remote, the
following describes the return value of each API and the status of communication end point.

tcp_acp_cep()
 [(Return value)] [(Status of communication end point)]
 time1: E_TMOUT Unused
 time2: Not return Kept in LISTEN state
 R: Not return Kept in LISTEN state

tcp_con_cep()
 [(Return value)] [(Status of communication end point)]
 time1: E_TMOUT Unused
 time2: E_CLS Unused
 R: E_CLS Unused

tcp_cls_cep()
 [(Return value)] [(Status of communication end point)]
 time1: E_TMOUT Unused
 time2: E_OK Unused
 R: E_OK Unused

tcp_snd_dat() *1
 [(Return value)] [(Status of communication end point)]
 time1: E_TMOUT ESTABLISHED
 time2: E_CLS CLOSED
 R: E_CLS CLOSED

tcp_rcv_dat()
 [(Return value)] [(Status of communication end point)]
 time1: E_TMOUT ESTABLISHED
 time2: Does not apply because no data is sent
 R: E_CLS CLOSED *2

[(*1)] Return value of tcp_snd_dat()
Even when FIN is received from the other side of communication, it is possible to send data until
FIN is sent out from the local node. Therefore, tcp_snd_dat() does not return the return value
E_CLS even when FIN is received from the remote.
If RST is received from the remote, the return value E_CLS is returned.

[(*2)] Processing in tcp_rcv_dat() when RST is received
If RST is received from the other side of communication, the return value E_CLS is returned after
reading out all of the data in the receive window. While reading out data from the receive window,
the return value is the size of the read data.

[(Supplement 1)] Return value of tcp_sht_cep()
Because this API does not enter to a pending, even when the line is disconnected, the same return
value as usual is returned.

Renesas microcomputer TCP/IP for Embedded system M3S-T4-Tiny: User's Manual

R20UW0031EJ0106 Rev.1.06 Page 90 of 93
Apr 01, 2014

A3. Return value and operation of API for TCP in each state
TCP state == CLOSED

call condition: 1. Specifying TMO_FEVR in main process
 2. Specifying TMO_NBLK in main process
 3. Specifying TMO_FEVR in callback routine
 4. Specifying TMO_NBLK in callback routine
 5. Using blocking call in main process (no registration of callback routine)
 6. Using non-blocking call in main process (registration of callback routine)
 7. Using blocking call in callback routine (no registration of callback routine)
 8. Using non-blocking call in callback routine (registration of callback routine)
1-4 is a condition of API with the time-out argument.
5-8 is a condition of API without the time-out argument.

CLOSED call condition return value operation
tcp_acp_cep() 1 E_OK T4 returns from API after connection establishment

2 E_WBLK T4 calls callback routine with parameter "E_OK" after
establishment

3 E_PAR T4 returns immediately after calling API.
4 E_WBLK T4 calls callback routine with parameter "E_OK" after

establishment
tcp_con_cep() 1 E_OK T4 returns from API after establishment

2 E_WBLK T4 calls callback routine with parameter "E_OK" after
establishment

3 E_PAR T4 returns immediately after calling API.
4 E_WBLK T4 calls callback routine with parameter "E_OK" after

establishment
tcp_snd_dat() 1 E_OBJ T4 returns API in first T4 cycle of time after calling API.

2 E_WBLK T4 calls callback routine with parameter "E_OBJ" in first
T4 cycle of time after calling API.

3 E_PAR T4 returns immediately after calling API.
4 E_WBLK T4 calls callback routine with parameter "E_OBJ" in first

T4 cycle of time after calling API.
tcp_rcv_dat() 1 E_OBJ T4 returns API in first T4 cycle of time after calling API.

2 E_WBLK T4 calls callback routine with parameter "E_OBJ" in first
T4 cycle of time after calling API.

3 E_PAR T4 returns immediately after calling API.
4 E_WBLK T4 calls callback routine with parameter "E_OBJ" in first

T4 cycle of time after calling API.
tcp_sht_cep() 5 E_OBJ T4 returns API in first T4 cycle of time after calling API.

6 E_WBLK T4 calls callback routine with parameter "E_OBJ" in first
T4 cycle of time after calling API.

7 E_NOSPT T4 returns immediately after calling API.
8 E_NOSPT T4 returns immediately after calling API.

tcp_cls_cep() 1 E_OBJ T4 returns API in first T4 cycle of time after calling API.
2 E_WBLK T4 calls callback routine with parameter "E_OBJ" in first

T4 cycle of time after calling API.
3 E_OBJ T4 returns immediately after calling API.
4 E_WBLK T4 calls callback routine with parameter "E_OBJ" in first

T4 cycle of time after calling API.
tcp_can_cep() 5 - T4 does not call callback routine.

6 E_OK T4 calls callback routine with parameter "E_RLWAI"
after completing cancellation.
(If specified API is not pending, T4 calls callback routine
with parameter "E_OBJ".)

7 E_NOSPT T4 returns immediately after calling API.
8 E_NOSPT T4 returns immediately after calling API.

Renesas microcomputer TCP/IP for Embedded system M3S-T4-Tiny: User's Manual

R20UW0031EJ0106 Rev.1.06 Page 91 of 93
Apr 01, 2014

TCP state == ESTABLISHED
ESTABLISHED call condition return value operation
tcp_acp_cep() 1 E_OBJ T4 returns API in first T4 cycle of time after calling

API.
2 E_WBLK T4 calls callback routine with parameter "E_OBJ" in

first T4 cycle of time after calling API.
3 E_PAR T4 returns immediately after calling API.
4 E_WBLK T4 calls callback routine with parameter "E_OBJ" in

first T4 cycle of time after calling API.
tcp_con_cep() 1 E_OBJ T4 returns API in first T4 cycle of time after calling

API.
2 E_WBLK T4 calls callback routine with parameter "E_OBJ" in

first T4 cycle of time after calling API.
3 E_PAR T4 returns immediately after calling API.
4 E_WBLK T4 calls callback routine with parameter "E_OBJ" in

first T4 cycle of time after calling API.
tcp_snd_dat() 1 Positive value T4 returns after completing transmission

2 E_WBLK T4 calls callback routine with positive number after
completed transmitting.

3 E_PAR T4 returns immediately after calling API.
4 E_WBLK T4 calls callback routine with positive number after

completing transmission
tcp_rcv_dat() 1 Positive value T4 returns after completing reception

2 E_WBLK T4 calls callback routine with positive number after
completing reception

3 E_PAR T4 returns immediately after calling API.
4 E_WBLK T4 calls callback routine with positive number after

completing reception
tcp_sht_cep() 5 E_OK T4 returns API in first T4 cycle of time after calling

API.
6 E_WBLK T4 calls callback routine with parameter "E_OBJ" in

first T4 cycle of time after calling API.
7 E_NOSPT T4 returns immediately after calling API.
8 E_NOSPT T4 returns immediately after calling API.

tcp_cls_cep() 1 E_OK T4 returns after normal closing.
2 E_WBLK T4 calls callback routine with parameter "E_OK"

after normal closing.
3 E_OK T4 returns after normal closing.
4 E_WBLK T4 calls callback routine with parameter "E_OK"

after normal closing.
tcp_can_cep() 5 - T4 does not call callback routine.

6 E_OK T4 calls callback routine with parameter "E_RLWAI"
after completing cancellation
(If specified API is not pending, T4 calls callback
routine with parameter "E_OBJ".)

7 E_NOSPT T4 returns immediately after calling API.
8 E_NOSPT T4 returns immediately after calling API.

call condition: 1. Specifying TMO_FEVR in main process
 2. Specifying TMO_NBLK in main process
 3. Specifying TMO_FEVR in callback routine
 4. Specifying TMO_NBLK in callback routine
 5. Using blocking call in main process (no registration of callback routine)
 6. Using non-blocking call in main process (registration of callback routine)
 7. Using blocking call in callback routine (no registration of callback routine)
 8. Using non-blocking call in callback routine (registration of callback routine)
1-4 is a condition of API with the time-out argument.
5-8 is a condition of API don't have the time-out argument.

Renesas microcomputer TCP/IP for Embedded system M3S-T4-Tiny: User's Manual

R20UW0031EJ0106 Rev.1.06 Page 92 of 93
Apr 01, 2014

Appendix B. T4 Software structure

library work RAM

Data buffer RAM

Application

Receive/Transmit
interrupt function

Driver buffer
RAM

T4-Tiny

Timer interrupt
function

Library RAM

 driver

lan_read()

ppp_read()

lan_write()

ppp_write()

tcp_api_wup()

udp_api_wup()

callback
routine

Various API

User
application

_process_tcpip (1)

tcp_api_slp()

udp_api_slp()

Renesas microcomputer TCP/IP for Embedded system M3S-T4-Tiny: User's Manual

R20UW0031EJ0106 Rev.1.06 Page 93 of 93
Apr 01, 2014

Website and Support
Renesas Electronics Website

http://www.renesas.com/

Inquiries

http://www.renesas.com/contact/

All trademarks and registered trademarks are the property of their respective owners.

http://www.renesas.com/
http://www.renesas.com/contact/

A-1

Revision History

T4 Ver.

Rev.

Date

Description
Page Summary

2.00 1.06 Apr.01.04 - Supported Several LAN port
1.06 1.05 Jun.21.13 10 Changed library Datatype list

33 Changed spec, udp_snd_dat()
36 Changed spec, udp_rcv_dat()
43 Added information about callback routine.
48 Changed T4 Limitations and Usage Precautions

1.05 1.04 Apr.01.12 - Change spec, api_wup() and api_slp()
Change spec, modem_open()
Change spec, _process_tcpip()
Change spec, tcp_rcv_dat() can use TMO_POL
Add PPP server / PPP client switch function
Add PPP authentication, CHAP(MD5)

1.04 1.03 Aug.23.11 20 Add UDP option settings.
44 Add user definition function "report_error()"
54 Revised flow processing

- 1.02 Jan.24.11 10 Change library Datatype list
1.01 1.01 Jan.06.11 - Change api_wup() prototype
1.00 1.00 Oct.07.10 - First edition issued

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that
have been issued for the products.

1. Handling of Unused Pins
Handle unused pins in accordance with the directions given under Handling of Unused Pins in the
manual.
 The input pins of CMOS products are generally in the high-impedance state. In operation with an

unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an
associated shoot-through current flows internally, and malfunctions occur due to the false
recognition of the pin state as an input signal become possible. Unused pins should be handled as
described under Handling of Unused Pins in the manual.

2. Processing at Power-on
The state of the product is undefined at the moment when power is supplied.
 The states of internal circuits in the LSI are indeterminate and the states of register settings and

pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of pins
are not guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function
are not guaranteed from the moment when power is supplied until the power reaches the level at
which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
Access to reserved addresses is prohibited.
 The reserved addresses are provided for the possible future expansion of functions. Do not access

these addresses; the correct operation of LSI is not guaranteed if they are accessed.
4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.
When switching the clock signal during program execution, wait until the target clock signal has
stabilized.
 When the clock signal is generated with an external resonator (or from an external oscillator)

during a reset, ensure that the reset line is only released after full stabilization of the clock signal.
Moreover, when switching to a clock signal produced with an external resonator (or by an external
oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products
Before changing from one product to another, i.e. to a product with a different part number, confirm
that the change will not lead to problems.
 The characteristics of an MPU or MCU in the same group but having a different part number may

differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect
the ranges of electrical characteristics, such as characteristic values, operating margins, immunity
to noise, and amount of radiated noise. When changing to a product with a different part number,
implement a system-evaluation test for the given product.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the

use of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or

technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or

third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on

the product's quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical

implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it

in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses

incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the

use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and

malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the

possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,

please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics

products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or

regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the

development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and

regulations and follow the procedures required by such laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the

contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics

products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022/9044
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics Korea Co., Ltd.
12F., 234 Teheran-ro, Gangnam-Ku, Seoul, 135-920, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2014 Renesas Electronics Corporation. All rights reserved.
Colophon 4.0

	1. T4 Library specifications
	1.1 Overview
	1.2 Basic knowledge of TCP/IP
	1.2.1 About the Connection
	1.2.2 About the Client-Server Model
	1.2.3 IP Address and Port Number
	1.2.4 About the Socket

	1.3 Basic Knowledge of ITRON TCP/IP API Specification
	1.3.1 Handling of Connection
	1.3.2 Handling of a Client/Server Model
	1.3.3 Reception Points and Communication End Points

	1.4 Definition of Terms
	1.4.1 Reception Point
	1.4.2 Communication End Points
	1.4.3 Timeout
	1.4.4 Non-blocking Calls and Callback
	1.4.5 Polling
	1.4.6 Pending
	1.4.7 MSS (Maximum Segment Size)
	1.4.8 IP Fragments
	1.4.9 Receive Window
	1.4.10 PPP (Point to Point Protocol)
	1.4.11 PAP (Password Authentication Protocol)
	1.4.12 ICMP (Internet Control Message Protocol)
	1.4.13 ARP (Address Resolution Protocol)

	1.5 Program development produce

	Driver API
	2. Outline of the T4
	2.1 Product information
	2.1.1 Document
	2.1.2 T4 Library
	2.1.3 Sample Program

	2.2 Outline Library Specifications

	3. T4 Library type definitions
	4. T4 Library structures
	4.1 TCP object structure
	4.2 UDP object structure

	5. T4 Library enums
	5.1 TCP function return code
	5.2 UDP function return code
	5.3 Error Codes Used in APIs
	5.4 Timeout
	5.5 Special IP Address and Port Numbers

	6. T4 Configuration File
	6.1 Definition of LAN port number
	6.2 Definition of TCP reception points
	6.3 Definition of TCP communication end points
	6.4 Definition of UDP communication end points
	6.5 Definition of IP header-related
	6.6 Definition of TCP options
	6.6.1 MSS for TCP
	6.6.2 Initial value of sequence number
	6.6.3 2-MSL wait time
	6.6.4 Maximum value of retransmission timeout period
	6.6.5 Presence of TCP multiple transmit for Delay ACK

	6.7 UDP option settings
	6.7.1 UDP zero checksum definition

	6.8 Local node settings (Ethernet)
	6.9 Local node settings (PPP)
	6.9.1 Local node settings (PPP client)
	6.9.2 Local node settings (PPP server)
	6.9.3 Common settings for modem (PPP server/PPPclient)

	7. T4 Configuration File (Several LAN ports)
	7.1 LAN port number definition
	7.2 Definition of TCP reception points
	7.3 Definition of TCP communication end points
	7.4 Definition of UDP communication end points
	7.5 Definition of IP header-related
	7.6 Definition of TCP options
	7.7 Definition of UDP options
	7.7.1 UDP zero checksum definition

	7.8 Local node settings (Ethernet)

	8. T4 Library functions
	8.1 tcp_acp_cep
	8.2 tcp_con_cep
	8.3 tcp_sht_cep
	8.4 tcp_cls_cep
	8.5 tcp_snd_dat
	8.6 tcp_rcv_dat
	8.7 tcp_can_cep
	8.8 udp_snd_dat
	8.9 udp_rcv_dat
	8.10 udp_can_cep
	8.11 ppp_open
	8.12 ppp_close
	8.13 ppp_status
	8.14 ppp_api_req
	8.15 callback
	8.16 tcpudp_get_ramsize
	8.17 tcpudp_open
	8.18 _process_tcpip
	8.19 tcpudp_close

	9. Ethernet and PPP Driver API Specifications
	9.1 lan_open
	9.2 lan_close
	9.3 sio_open
	9.4 sio_close
	9.5 modem_active_open
	9.6 modem_passive_open
	9.7 modem_close
	9.8 get_random_number

	10. Sample Program
	10.1 Flow of the main function
	10.2 Flow of the TCP echo back server function(for blocking call)
	10.2.1 Flow of the echo back server function

	10.3 Flow of the TCP echo back server function (for nonblocking call)
	10.3.1 Flow of the echo back server function
	10.3.2 Flow of the callback function

	10.4 Flow of the UDP echo back server function (for blocking call)
	10.4.1 Flow of the echo back server function

	10.5 Flow of the UDP echo back server function (for nonblocking call)
	10.5.1 Flow of the echo back server function
	10.5.2 Flow of the callback function

	10.6 Execution Environment
	10.7 Execution Method
	10.8 Execution Environment (several LAN port)
	10.9 Execution Method(Several LAN port)

	11. T4 Limitations and Usage Precautions
	Appendix A. Return Values of TCP APIs
	A1. Behavior of the API when the Line is disconnected unintentionally
	A2. Return value of each TCP API and the status of communication end point
	A3. Return value and operation of API for TCP in each state

	Appendix B. T4 Software structure
	Website and Support
	Revision History
	General Precautions in the Handling of MPU/MCU Products
	Notice

