
特集*ディジタル時代のビデオ信号操作術

第6章 ゲイン固定のビデオ専用タイプから 汎用の高速タイプまで

ビデオ用 OP アンプの 種類と使い方

永沢 純一 Jyunichi Nagasawa

「一般的な高速OPアンプとビデオ用OPアンプとの 厳密な違いはない」と、私は思っています.ですが、 ここではICメーカがビデオ用としている高速OPア ンプを特にビデオ用OPアンプと呼ぶことにしましょう。

ビデオ用OPアンプは、大きく次の二つに分けられます。

- ・ゲイン設定用抵抗を内蔵したゲイン固定タイプ
- •汎用の高速 OP アンプ

このほかに、ビデオ特有の機能をもったICも数多く 市販されていますが、OPアンプというよりは専用IC に近いので、ここでは除外しています。

ゲイン固定のビデオ専用 OP アンプ

表6-1(次頁)にゲイン固定タイプのビデオ用 OP アンプの仕様を示します.

ゲインは6dBが一般的

表6-1からわかるように、ゲインの大きさは通常2倍(6dB)固定です。ゲイン精度は数%~10%程度が一般的ですが、民生用の監視カメラなどでは最終的にボリュームで調整を行うので、この程度の誤差は問題ない値です。業務用監視カメラでは1%以下を使いたいところです。

ゲインの大きさは2ですが、 $\mathbf{図6-1}$ のようにすればG=2以外にも、G=1およびG=-1が可能です.

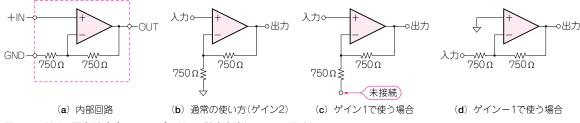
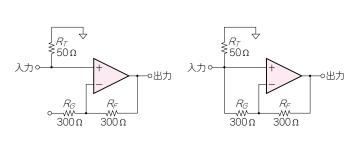



図6-1 ゲイン固定型ビデオ・アンプのゲイン設定方法(AD8079の場合)

- (a) 周波数特性にピークが出る接続
- (b) ピークが出にくい接続

図 6-2 ビデオ用 OP アンプ OPA693 を使ったゲイン 1 のバッファ・アンプ

トランジスタ技術 2004年7月号

表 6-1 ゲイン固定タイプのビデオ用 OP アンプのいろいろ

型名	メーカ	動作電圧範囲 [V]	消費電流 [mA]	DG [%]	<i>DP</i> [°]	- 3 dB周波数 [MHz]	スルー・レート [V/μs]	入力雑音電圧 [nV/√Hz]
NJM2267	新日本無線	4.89 ~ 9.0	7	1	1	7	_	_
MAX4090	マキシム	2.7 ~ 5.5	6.5	1@3 V 0.5@5 V	0.8@3 V 0.5@5 V	55	275	_
MAX4032		5	6.5	0.4	0.6	55	275	_
OPA692	テキサス・インスツルメンツ	5~12	5.1	0.07	0.02	190@5 V	83 0 @5 V	1.7@1 MHz
OPA693		5~12	13	0.03	0.01	526@5 V	1500@5 V	1.8@1 MHz
OPA3692		5~12	5.1	0.07	0.02	190@5 V	830@5 V	1.7@1 MHz
AD8075	アナログ・デバイセズ	± 5	8	0.01	0.01	550	1350	22@10 k ~ 100 MHz
AD8079		± 3~±6	5	0.01	0.02	260	750	2@10 kHz

ただし、IC は G=2 で最適周波数になるように設計されているので、G=1 では周波数特性にピークが生じてしまいます.

このピークを小さくしたいときは図6-2の方法が

あります. 図6-2(c)に二つの回路の周波数特性の違いを示しておきます. これは OPA693 の場合ですが,図6-2(a) では 1.5 dB ほどあった周波数特性上のピークが、図6-2(b) では 0.3 dB 程度に小さくなっている