3Dアニメ!電波科学シミュレータDVD

第5話 ほかの誰よりも強くクラウド とつながるために

空中の エレキ・ サイエンス

4

5

6

IoT攻略の鍵! アンテナ&電波 超入門

川田 章弘 Akihiro Kawata

アンテナを理解するための第一歩は、その動作を 知ることです。

皆さんは、アンテナは専門ではないかもしれませ んが、学校で学んだはずのマクスウェルの方程式を 眺めながら、「どうして電波は発生し、空中を飛ん でいくのか?」という疑問を念頭において、電波と アンテナのふるまいをイメージしてみましょう.

IoT作るならアンテナに全力投球!

今こそ「アンテナ」に注目すべき

最近は、ちょっとした日用品でも、Wi-Fiなどの 無線通信機能を搭載しています。携帯電話(スマート フォン) はもちろんのこと、 ワイヤレス・マウスは Bluetooth 接続、クルマの鍵(スマート・キー) もワイ ヤレスで操作できます.

これらのワイヤレス機器の基幹部品は「アンテナ」 です。アンテナは、私たちが独自に設計でき、かつ製 品の競争力を生み出せる注目すべき部品です。

電波がスムーズに出入りできる窓を作る

アンテナが重要な理由は、電波(電磁波)の出入り口 だからです.

オーディオ機器をイメージすれば、音の出入り口で あるマイクロフォンやスピーカが重要なのはわかると 思います. それと同様に、外界と電子回路を繋ぐ大切 な窓がアンテナです.

小さなスピーカを使って、小さな電力で重厚な低音 を出してほしいと言われても無理なように、小さなア ンテナで高性能(高ゲインで広周波数帯域)を実現する ことも、物理の法則に反しているので無理です.

電波伝搬とはエネルギの伝搬現象です. エネルギを 効率よく伝搬するためには、アンテナ形状や設置方法 を最適化する必要があります. アンテナを粗末に扱う と、無線通信品質の低下を引き起こします.

アンテナがひどい設計(設置)だったため、災害無線 通信が使いものにならなかった、なんてことが起こっ ては大変です. 皆さんが普段使っている無線LAN(Wi - Fi) も、アンテナ性能が悪ければ高速通信を実現で きません. 無線通信におけるアンテナの重要性は今も 昔も変わりません.

空間を伝わる「電波」の正体

● 導線に電気を流すと磁界が生じる

導線に電気を流してみましょう.

なぜ電気を流すのか?は、ここでは考えません、電 気や磁気学の発展は科学実験の成果です。知的好奇心 から導線に電気を流して実験したと考えます.

導線に電気を流すには、

導線に電池を繋いでみるの が簡単でしょう。 電気を流している導線の近くに、コ ンパス(方位磁針)を近づけると針が動く、という現象 を最初に見つけたのはエルステッドです.

電流の向きを右手の親指方向にあわせると、磁界の 流れる向きは人差し指から小指までの4本の指の向き と一致します。図1のように導線に沿って「いいね! | をしてみるとよいでしょう.

導線に流れる電流と磁界の間には、アンペアの法則 が成立します。図1に書いた式のrotは「くるっと回 る(rotation) | という意味です. 数式(ベクトル解析) で表現すると、逆3角形の記号(ナブラ)の $\Gamma \times H$ とい

 $rotH = \nabla \times H = i$ H:磁界, /:電流 電流が流れると、くるりと回る (rot)磁界が生じる 〈アンペアの法則〉

導線に電気を流すには 電池をつなげばよい

この法則を最初に見つけたのはエルステッド (コンパスの針が動いた!)

ちなみに…磁束密度をBとすると, *divB*=∇·*B*=0 磁束(磁気)には「点源」がない 〈磁界に関するガウスの法則〉

図1 導線に電気を流すと磁界が生じる、磁気は点では存在しない 導線(電流の流れ)と垂直に、回るように磁界が発生する

【セミナ案内】実践・Zynq×カメラ×Linuxではじめる画像処理システム開発 カメラ・モジュール, Linux ドライバ, アプリ開発の勘所 トランジスタ技術 2017年12月号 【講師】石原 ひでみ 氏, 11/21(火) 26,000円(税込み) http://seminar.cqpub.co.jp/

15

59