

第4章 1300個の地上基準点で、衛星の時刻や軌道の誤差や大気の影響を測定・推定して、アップリンク&全国放送

レシーバ単独で精度7 cm&収束1分! みちびきのセンチメータ 測位補強信号 [CLAS] 誕生

岸本 信弘 Nobuhiro Kishimoto

GPSでcm精度の測位を実現する方法はいくつか ありますが、どれも一長一短です、特に高い精度が 出せるRTK測位は、10km以内に基準局が必要な ので、自分で基準局を設置したり、基準局の情報を インターネット接続で取得する必要がありました.

2018年11月から正式に始まったみちびきの測位補 強サービス CLAS (Centimeter Level Augmentation Service:シーラスと読む)を利用すると、基準局が なくても移動局単独で、数cmの精度が得られます.

個人で購入できる価格帯のCLAS対応受信機はま だありませんが、将来的には普及が期待されていま す. このCLASのしくみについて解説します.

〈編集部〉

2台使いの時代は終わる? レシーバ1台でcm測位が可能に!

みちびきのL6Dチャネルで配信されているCLAS (Centi-meter Level Augmentation Service, センチ メータ級測位補強サービス)の情報を利用すると、 PPP - RTK (Precise Point Positioning - Real Time Kinematic)という測位が可能で、測位開始から約1分 で自分の位置を誤差10cm以下で求められます.

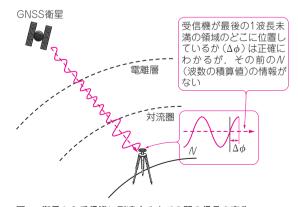
仕様では移動体の水平誤差が6.94 cm_{RMS}となって いて、これはRTK測位で基線長(主点間の地表上での 距離) $20 \sim 30 \text{ km}$ だったときの結果に準じる性能です.

国が主導して日本国内限定で運用しています. 受信 機側ではCLASに対応する処理が必要だったり、その 受信機やアンテナに求められる性能が高いこともあり. 現状では個人が気軽に利用できるものではありません. しかし、その性能と利便性から、今後、広く社会利用 が想定されるサービスです.

本稿では、CLASによる測位補強がどのような仕組 みなのかを解説します. CLASを支える地上システム の紹介、配信される補正情報の中味、補正情報を利用 して高精度な測位をする方法について説明します.

そもそも測位誤差の要因は何?

高精度測位とは衛星との距離を正確に求めること


衛星から受信機までの距離が正確にわかっていれば 高精度な測位ができます. 衛星の位置によってその距 離は異なりますが、天頂付近にあるGPS衛星と地上 の距離は約20000 kmで、送信信号が地上に到達する 時間は100 ms以内です.

元々のGPS測位方法は、決められた符号(コード) を搬送波に乗せて配信し、それを読み解くことで距離 を測定するコード測位でした。この方法ではコードで 測位精度の限界が決まり、精度は数mです。

信号強度などの条件は無視するとして、衛星と受信 機(正確にはアンテナ)の間の距離を誤差数cmで決定 する高精度測位は、すべて搬送波を使っています、搬 送波測位では、搬送波も観測して距離を測るのに使う ことで、cm精度を実現します.

搬送波も使って精度 UP

受信した搬送波位相の測定では、受信機内で搬送波

衛星から受信機に到達するまでの間の信号の変化 電波は異なる媒質を通るときに屈折し、伝搬速度が変わる。いつも一 定なら良いのだが、電離層の影響は太陽の影響で変動し、対流圏の影 響は気候により変動する