

第3章 外付けゼロ!ジャイロ・センサから 発生するドリフトを推定&キャンセル

ワークショップ② 棒を傾けても水平キープ*!* 自撮り用姿勢バランサの製作

宫園 恒平 Kohei Miyazono

2足歩行ロボットなどに代表される姿勢制御マシ ンは、サーボモータやセンサを多数用います.

一般的なマイコンは、PWMパルスを生成するタ イマ・モジュールを数個しか内蔵していないので. サーボモータの数が多くなると対応できません.

ソフトウェア制御でPWMパルスを生成できます が、割り込み処理ではパルス幅がずれるため調整が たいへんです。これではロボット制御に注力できま せん.

PSoCはバリエーション豊かで汎用性の高いコン ポーネントを備え、それらを自由にカスタマイズで きる高い柔軟件を持っています.

TCPWM コンポーネントは、タイマ/カウンタ/ PWMとして使えます. GUIで配置して初期設定を すると、自動生成されるAPIを呼び出すだけで PWM を生成できます。 TCPWM コンポーネントは、 ハードウェアで信号を生成するので、CPUに負荷 をかけず、安定した高精度なパルスを生成できます.

PSoCを使えば、サーボモータ用PWM信号やセ ンサとの通信プログラムが短時間で作れます. 本来 のロボット制御の作り込みに集中でき、結果として 生産性があがります.

本稿では、PSoC 4100SのTCPWMコンポーネン トとSCBコンポーネントを使った1軸カメラ・スタ ビライザを製作しました. サーボモータの駆動やセ ンサとの通信プログラムは、コンポーネントで作り ます. 〈編集部〉

姿勢制御により カメラの向きを一定に保つ

付録基板を使って製作したカメラ・スタビライザ 写真1に示すのは本誌付録基板を使って製作したカ メラ・スタビライザです.

外見は自撮り棒のように見えますが、 カメラ取付部 がサーボになっており、持ち手部分に対するカメラの 角度を変えられます. カメラの取付部の下には、後述 する慣性計測ユニット(IMU: Inertial Measurement

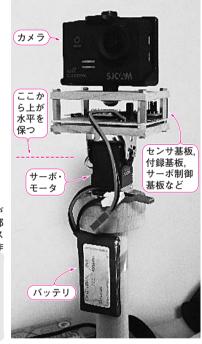


写真1 持ち手が 傾いてもカメラ部 分は水平を保つス タビライザを製作 メーカ製のよう に3軸を目指すと 大変だが 1軸な らシンプル. 搭 載カメラはGoPro クローンとして 有名なSJ5000X Elite(SJCAM社)

Unit)を含む制御ボードが組み込まれています. 姿勢 を検出してRCサーボの角度を制御することで、カメ ラの角度を一定に保ちます.

姿勢制御をカメラ・スタビライザで試す

カメラ・スタビライザとは、カメラの向きを一定に 保つ装置です. GoProのようなカメラを使った動画撮 影に使われます. 手ぶれや撮影者の動きによらずカメ ラが一定の方向を向くように姿勢制御を行うことで. 滑らかな映像が撮影できます.

ブラシレス・モータを使った3軸カメラ・スタビラ イザも市販されていますが、今回はピッチ方向(前後 の傾き)の1軸を制御する、ロボット用サーボを使っ た角度制御が容易なシステムにします.

3軸の姿勢制御は、センサ出力と姿勢の対応が非線 形となるため、行列やクオータニオン(四元数)を用い

【セミナ案内】[講師実演] 高速ビデオ・インターフェース/ HDMI2.1, DisplayPort1.4a, eDP1.4b, mipi, USB-Type-Cオルタネート・モード の最新動向 徹底解説!

【講師】長野 英生 氏、4/22(月)18,000円(税込み) 【会場】東京・品川 テクトロニクス社 セミナールーム https://seminar.cqpub.co.jp/