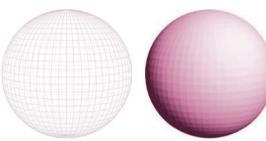
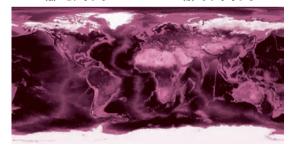
Cで直叩き!超並列コンピュータ GPU

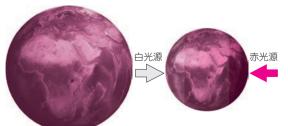

3D グラフィック専用プロセッサから汎用プロセッサへ

GPUのアーキテクチャ研究① ルーツと進化の過程

本章では、GPU(Graphics Processing Unit)の歴 史とCPUとの違い、GPUアーキテクチャの考え方 について概説します。GPUの並列性能を最大化す るプログラムを開発するためには、GPU固有の構 告とCPIJとの違いを理解する必要がありますので、 本章で説明する内容を頭に入れておくことをお勧め します.


5-1 ルーツはグラフィック 処理専用プロセッサ

GPUは元々は3Dなどのグラフィック処理専用に開 発されたプロセッサでした。もちろん今でも高性能



(a) モデリング

(b) レンダリング

(c) テクスチャ(NASA, Visible Earth, Reto stöckli, NASA Earth Observatory, 2004)

(d) テクスチャ・マッピング 図1 3Dグラフィックの例

(e) ライティング

3Dグラフィック処理にはGPUが使われています。皆 さんのお持ちのパソコンにもGPUが搭載されている と思います。

3D グラフィック処理の流れ

GPUが担っている3Dグラフィック処理の概要を説 明します。

3Dグラフィックは、図1(a)のように頂点情報から モデリングを行い. 図1(b)のように表面のレンダリ ングを行い、図1(c)のテクスチャ(表面の模様や質感) を図1(d)のように表面ピクセルに転写し、図1(e)の ようにライティングした状態(図では、左から白い光 源を、右から赤い光源を当てた状態)を再現するよう な処理です。

こうしたグラフィックを生成するためのパイプライ ン処理フローの一例を図2に示します.以下、その内 容です.

(a) 3Dグラフィックの入力情報

図形のジオメトリ(形状情報や頂点情報)およびそ のアトリビュート情報(属性データ)です。3Dグラ フィックは演算処理を通して生成するので、通常は 2D 画像(写真や絵など)よりもデータ量は少ないこ とが多いです。

(b) バーテックス・シェーダ

入力情報のジオメトリ情報から同転、拡大・縮小、 移動処理を施して、視点から見た頂点位置を計算し ます. このとき. 入力情報のアトリビュートから頂 点の色や、後述するテクスチャの座標情報をアサイ ンします. なお. シェーダとは陰影処理のことをい いますが、3Dグラフィック処理におけるシェーダ は「処理シーケンサ」という意味だと考えれば理解 しやすいかもしれません.

(c) テッセレーション

入力情報のデータ量を増やさずに、3D画像をよ り滑らかにし、よりきめ細かく表現するため、頂点 位置の分割を行います.

(d) プリミティブ処理

頂点情報から、基本図形(ポリゴンなど)の組み立 てや、クリッピング(隠れている箇所を描画しない ための処理で、正規化座標系への変換も実施)、ビ ユーポート変換(正規化座標系から、スクリーン座 標系への変換)などを実行します.

【セミナ案内】Linux を利用した組み込みシステムの開発 [講師による実験実演付き]

55

5

6

10