
連載

産業分野の主要センサ活用と 高精度なアナログ回路設計プロセスを学ぶ

新人技術者のための アナログ回路設計スタディ

第7回 ゲイン100倍2石トランジスタ・アンプの設計

中村 黄三 Kozo Nakamura

本文中の*印がある語句には p.161 に用語解説があります.

自由度の高いアンプに挑戦する

1月号および6月号で解説した内容を基に、不足分は順次補うものとして、2石トランジスタ・アンプの設計に挑戦してみましょう。位置づけとしては、ゲイン(電圧増幅度)は100倍で、次段のメイン・アンプに信号を送るプリアンプです。メイン・アンプの入力インピーダンス $10~\rm k\Omega$ を負荷として、 $1V_{\rm p-p}(0.1~\rm mA_{\rm p-p})$ の出力信号を供給できるものにします。使用するトランジスタは、6月号でとりあげた 2SC2712です。

● 設計の概略イメージ

設計の方向性としては、6月号**図9**で紹介した1石 アンプ(ブリーダ電流= $I_B \times 5$ 倍の定数)を単純に2段 縦列接続し、**表1**に示す設計仕様に基づいて回路定数 を調整していくものとします。2石トランジスタ・アンプの構成を**図1**に示します。設計練習の意味を兼ね、自分用一品物という"ノリ"で、低域カットオフ周波

表1 トレーニングのために設計するトランジスタ2石プ リアンプの仕様

設計効率アップのためには、例え趣味の工作でも、事前にスペックを決めるのがベター、さもないと途中で初期の目標を忘れ、考えがブレ、再計算に時間が割かれたりする

項目	スペック	条件
電源電圧	10 V ± 1 V	汎用3端子レギュレ ータ使用
電圧ゲイン	各段10倍,合計100倍	2段構成で総合誤差 ±0.1 dB
負荷抵抗 R _L	10 k Ω	メイン・アンプの 入力抵抗
出力電圧	$1 V_{p-p}$	負荷両端電圧
低域カット オフ周波数	20 Hz ± 2 Hz @ – 3 dB	1 kHz を基準
無信号時 消費電流	最大 2.5 mA	2段分の合計値
動作温度範囲	0℃~50℃	結露がないこと

 \langle メモ \rangle トランジスタ・アンプの定数は前後の回路条件、すなわち次段の入力インピーダンスや最終段の負荷の重さで各段の R_E 、 R_A 、 R_B の定数が変わってくるので、設計手順は**図1**の出力段(Q_2) から信号側に向かって順次計算していくのが効率的

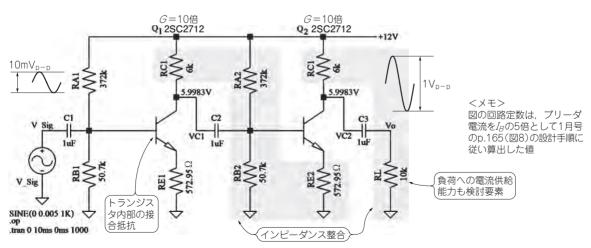


図1 トランジスタ2石 ゲイン100倍のアンプ設計に挑戦しよう

1月号で示したトランジスタ1石アンプを2段に縦列接続し、表1の仕様に基づき設計する。低域カットオフ周波数20 $Hz(-3\,dB)$ においてぴったりゲイン100倍のアンプを目指す。1月号の1石アンプでは $R_A(=R_1)$ と $R_B(=R_2)$ の最適値,および h_e や h_e の要素を考慮しないでオームの等式だけを使って設計したが,今回はこれらの要素の他,2段目アンプとのインピーダンス整合などを考慮に入れ,実機と同じ段取りで設計を進める