特集 * ネットワークで広がるハード制御

第6章

ウェブ・ブラウザで LED 出力や スイッチ入力を扱う

H8/Tiny BASIC による ネットワーク I/O 制御

ローカル 1/0 の実例

ここでは、AKI-H8/3069Fフラッシュマイコン LANボードに図1のようにポートAにLEDを三つ、 スイッチを一つ外付けした回路を前提にします.ポー トAの割り当ては表1のとおりです.

📕 プログラミング

まず,三つのLEDを一つずつシフトしながら繰り 返し点灯するプログラムを制作してみます.

各LED はそれぞれポート A の 04h (PA2), 10h (PA4), 40h (PA6) に割り当ててあります. ですから, 三つのLED を一つずつシフトしながら点灯するには, ポート A に出力するデータを 04h → 10h → 20h → 04h

<図1>ポートAにLEDを三つ, スイッチを一つ外付けした回路

-+ 1/co 3	Ĕ	~	2
SW 10k PAO	25	°56	
330Ω PA2	<u>27</u> 0	°58	
330Ω PA4	29 ₀	°30	
330Ω PA6	<u>31</u> 0	°35	
\div)	33。	o34	
	35 ₀	o36	
	37 ₀	o30	
	390	°40	
	C	V1	

〈表1〉図1の回路でのポートAの割り当て

ビット	PA7	PA6	PA5	PA4	PA3	PA2	PA1	PA0	
割り当て	(未使用)	LED6	(未使用)	LED4	(未使用)	LED2	(未使用)	SW0	<
CN1のピン番号	32	31	30	29	28	27	26	25]

Keywords

HD64F3069, AKI-H8/3069FフラッシュマイコンLANボード, H8/OS, ram3068.mot, rom3068.mot, net3068.mot, 自動スタート, ローカルI/O, モトローラS形式, CGI, HTML, FORM タグ, IPアドレス, ネット・マスク, ポート番号, netconfig.

→10h→20h→…のように無限に繰り返します.

H8/Tiny BASICで, このような繰り返し処理をす るには以下の二つのやりかたがあります.

三岩 幸夫 Yukio Mitsuiwa

 for文による繰り返しとgoto文による無限ループ この処理をフローチャートで表すと図2のようになります.これに基づいてコーディングしたBASICプ ログラムがリスト1です.

 if 文によるデータ初期化とgoto文による無限ループ この処理をフローチャートで表すと図3のようになります.これに基づいてコーディングしたBASICプ ログラムがリスト2です.

ローカル I/O 対応のモジュール (ram 3068.mot)のインストール

ram3068.motのインストールは、Windowsなら

<図2> for 文による繰り返しと goto 文

<リスト1> for 文による繰り返しと goto 文による無限ループ (LED1.bas)

p = &Hfee009-<ポートAのデータ方向レジスタ(PADDR))
@p = &H54→ ビット2, ビット4, ビット6は出力で, それ以外は入力)
p = &Hffffd9→ ポートAのデータ・レジスタ(PADR))
loop: - ラベルloop
d = 4 ← 変数dを4にセット
for i = 1 to 3- iを1から3まで繰り返す
@p = d ← PADRに d を出力
d << 2 → 変数dの内容を2ビット左へシフト
wait 5 - 500ms待ち
next i - 変数iの内容を一つ増やす)
goto loop - 「ラベル loop へ行く」

<図4>BASICプログラムの入力

gHB - HyperTerminal マイル(F) 編集(E) 表示(V) 通信(C) 転送(T) ヘルブ(H)	
16 <u>63 08</u>	
	1
basic >10 p = &Hfee009	
basic >20 @p = &H54	
basic >30 p = &Hffffd9	
basic >40 loop:	
basic >50 d = 4	
basic >60 for i = 1 to 3	
basic >70 @p = d	
pasic >80 d << 2	
pasic >90 wait 5	
pasic >100 next i	
pasic >110 goto loop	
basic >120 end	

ばCygwinのコマンド・プロンプトか, PC-UNIX な ら kterm などのターミナル・ソフトウェアを使いま す. 最新版のh8writeを使って, ram3068.mot を 以下の手順で内蔵 ROM に書き込みます.

まず,パソコンとH8/3069Fマイコン・ボードをシ リアル・インターフェース・ケーブルでつなぎます.

次にH8/3069Fマイコン・ボードのDIPスイッチの 1番と4番をON,2番と3番をOFFにしてから、マイ コンの電源をONし、ブート・モードで始動します. そして、以下のようにパソコン上で操作します.

h8write -3069 -f20 ram3068.mot

■ BASIC のコマンド操作による プログラム制作と保存

● ターミナル・ソフトウェアの起動

パソコンとH8/3069Fネットワーク・マイコン・ボ ードをケーブルでつないだまま,パソコンでは適当な ターミナル・ソフトウェアを起動して,マイコンの電 源を入れます.ターミナル・ソフトウェアは, Windowsでは「ハイパーターミナル」,PC-UNIX な ら cu や kermit などが代表的です.通信設定は, 57600 bps,データ長8ビット,パリティなし,1スト <リスト 2> if 文によ るデ - タ初期化と goto 文による無限ル

- プ(LED2.bas)
p = &Hfee009
@p = &Hff
p = &Hff
p = &Hff
d = 4
loop:
@p = d
d << 2
wait 5
if d > &H40
then d = 4
goto loop

end

ップ・ビット, ハードウェア・フローです.

🛑 プログラムの入力

パソコン側でターミナル・ソフトウェアを起動する と図4のようにBASICの入力プロンプトbasic >が 現れます.その画面上で図のように行番号を付けて, BASICプログラムを入力していきます.

● 入力した内容を確認して実行

BASICの入力プロンプト上でプログラムをすべて 入力し終わったら,図5のようにlistコマンドで入 力したBASICプログラムの内容を確認し,runコマ ンドでBASICプログラムを実行します.

このBASICプログラムは無限ループになっており, そのままでは終わらないので,CTRL+Cキーを押し て強制終了させます.

🛑 プログラムの保存

BASIC プログラムが無事に動作したら, save コマ ンドでファイルに保存して, 念のために files コマ ンドでファイル一覧を表示して, きちんと保存された かどうかを確認します.

以降,マイコンの電源が切れても,外付けの SEEPROM内に制作したBASICプログラムが保存さ れているので,いつでも読み出して実行できます.

BASIC コマンド操作による プログラム読み出しと実行

外付けの SEEPROM に保存した BASIC プログラム を読み出して実行するには、図6のように、まず load コマンドで読み出します. 念のため、listコ マンドでプログラムの内容を確認してから、run コマ