特集 * CMOS/CCD 画像センサ入門

第9章 環境構築から画像処理テクニックまで USB接続のパソコン用カメラで 物体認識と動き検出

画像認識を行いたい場合には、そのための環境を用 意する必要があります。ここではUSB接続のパソコ ン用カメラ(以下USBカメラ)を使ってWindows上で 画像処理をするための環境を整える方法と、実際の処 理例を紹介します。

この方法の最大の利点は手軽なことです. USB カ メラの価格は数千円程度と安価ですし,演算にはパソ コンを使うため,さまざまな処理を比較的簡単に実現 できます.最終的には専用ハードウェアを使って画像 認識を行う場合でも,初期の段階でのアルゴリズムの 検討や,どの程度の性能のカメラが要求されているの かを見極めるためには十分に有効な方法でしょう.

知っておきたいこと

● パソコンへの映像入力デバイス

パソコンに映像を取り込む方法はいくつかあります. 例を挙げると、ビデオ出力をPCI接続のキャプチャ・ ボードを通して取り込む方法や、IEEE1394経由で DVカメラの映像を取り込む方法などです.

その中でもUSBカメラを選択した理由は、ほかの 方法に比べて機器の入手性が良く、安価であることに あります.USBカメラにはレンズなどの光学系、撮 像素子(主にCMOS画像センサ)とその周辺回路、パ ソコンに接続するためのUSBインターフェースのす べてが備わっています.現在販売されているパソコン のほとんどにはUSB端子が用意されています.した がって、これ一つで手軽に周辺の映像を入力できます. ● 画像取り込みのライブラリ

Windows上で映像を取り込むにはDirectShowを使いました.これはマイクロソフト社⁽¹⁾が開発した DirectXのうち,ビデオやオーディオなどマルチメデ ィア関係の処理を行うためのライブラリです.

動作OSはDirectShowが動作するWindowsになり ますが、開発中にエラーが発生した場合の安定性を考 え、Windows NT系のOSを使うことをお勧めします. なお、本稿では最新のDirectX8.1bを使っています. 今回は簡単に画像処理に挑戦するということでUSB カメラを例にあげましたが、DirectShowを使った画 像取得の方法はWindows上で扱うことのできるビデ オ・キャプチャ・デバイスの多くに適用できます.

横山 大明/関口 正浩 Hiroaki Yokoyama/Masahiro Sekiguchi

● パソコンを使った画像認識プログラム

映像を取り込んだ後,認識のための演算にはパソコ ンを使います.得意不得意はありますが,パソコンの もつ十分な演算速度と潤沢なメモリを使い,幅広い処 理を実現できます.プログラムを制作する段階では試 行錯誤の繰り返しになりますが,そのやりやすさでは パソコンよりも優れた開発環境はないでしょう.

<写真1> Creative Webcam5の外観 [クリエイティブメディア(株]]

Keywords

パソコン用カメラ, USBカメラ, DirectShow, DirectX8.1b, Borland 社, Borland C++ Compiler, BCC, Creative Webcam5, M.Fotsch氏, borland_dx8_libs.zip, CCapDS, *RGB*24ビット・フォーマット, DIB, Device Independent Bitmap, 物体認識, しきい値処理, 動体検出, ラベリング, *YUV*420.

コンパイラにはBorland 社⁽²⁾から無償配布されてい る Borland C++ Compiler (以下 BCC) を利用しました. ここに Microsoft 社から同じく無償配布されている DirectXの開発キットDirectX8.1b SDKを追加して, C/C++言語を使ってプログラムを開発していきます.

● 使用した USB カメラ

カメラはクリエイティブメディア⁽³⁾から販売されて いる "Creative Webcam5" という製品(写真1)を使 用しました.撮像素子として約30万画素のCMOSイ メージ・センサを使っていて,最大640×480ピクセ ルの解像度(VGA)でパソコンへ映像を入力できます.

フレーム・レートは解像度が640×480ピクセルの 場合には15フレーム/秒程度,320×240ピクセルの 場合には30フレーム/秒程度です.2002年11月現在は 5~6千円程度で入手できます。市場に出回っている USBカメラは、このクラスのものが一番多いと思いま す.

そのほかには、撮像素子としてCCDを搭載したも のや、最近はさらに安価で約10万画素のCMOSセン サを使ったものも販売されているようです.

開発環境の構築

● 必要なファイルの準備

開発に必要なコンパイラやライブラリを用意します. DirectX SDK はマイクロソフト社のホーム・ページ⁽¹⁾ から, BCC は Borland 社のホーム・ページ⁽²⁾からダウ

<図1>Borland用 Directx8インポート・ライブラリの配置場所

ンロードできます.

DirectX SDK にはBorland 社製のコンパイラで扱う ことのできる形式のインポート・ライブラリが含まれ ていません. M. Fotsch 氏がBorland 用のインポー ト・ライブラリをダウンロードできる形(borland_ dx8_libs.zip)で公開しているので、使わせていた だくことにします(4).

章末に示したURLから以上3点を用意してくださ い. DirectX SDKとBCCはサイズが大きいので、ブ ロードバンド環境のない方はダウンロードが困難だと 思います、さまざまな雑誌で付録に収録されているこ ともあるので,探してみるのも手でしょう. DirectX SDKは、Microsoft社のホーム・ページからCD-ROM を申し込むことも可能です.

DirectX SDK と BCC のインストール

まずDirectX SDK をインストールします. zipファ イルを展開したフォルダにあるセットアップ・プログ ラムの指示にしたがってインストールしてください. 途中retailバージョンかdebugバージョンかを選択で きますが、本稿で紹介する内容を試す範囲では retail バージョンで十分です.

次にBCCをインストールします. これもインスト ーラの指示にしたがってインストールしてください. 最後に Borland 用 DirectX8 インポート・ライブラリ をインストールします.図1に示す位置に zip ファイ ルを展開してください. デフォルト設定以外で DirectX SDK をインストールした方は適宜読み替え てください.

DXSDK	
	<リスト1>BCC 用設定ファイル
	−I"c:¥DXSDK¥include;c:¥Borland¥Bcc55¥include" −L"c:¥DXSDK¥blib;c:¥Borland¥Bcc55¥lib"
L (borland_dx8_libs.zip)	(a) bcc32.cfg
	-L"c: #DXSDK#blib;c: #Borland#Bcc55#lib"

(b) ilink32.cfg

機能	関数
初期化処理	bool CCapDS::Initialize(HWND hwnd)
終了処理	<pre>void CCapDS::CleanUp()</pre>
カメラからの入力開始	<pre>bool CCapDS::Start()</pre>
カメラからの入力停止	<pre>bool CCapDS::Stop()</pre>
明度などカメラ・パラメータ調整	<pre>bool CCapDS::ShowDevProperty()</pre>
解像度,映像フォーマット調整	<pre>bool CCapDS::ShowPinProperty()</pre>
静止画読み込み	<pre>EBitmap2 *CCapDS::GetSample()</pre>
	<pre>bool CCapDS::GetSample(EBitmap2 *eb)</pre>
映像フォーマットを得る	<pre>const BITMAPINFOHEADER *CCapDS::GetBitmapInfoHeader()</pre>
エラー処理	<pre>const TCHAR *CCapDS::GetErrMsg()</pre>
	<pre>const char *CCapDS::GetErrPosMsg()</pre>
	const char *CCapDS::GetErrPosMsg()

<表1> CCapDSの公開メンバ関数